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Chapter 1

Introduction

This report describes work concerned with automating the operation of complex physical

systems; in particular, those involved in space missions. Such operations include subsystem

monitoring, preventative maintenance, malfunction handling, fault isolation and diagnosis,

communications management, maintenance of life support systems, power management,

monitoring of experiments, satellite servicing, payload deployment, orbital-vehicle opera-

tions, orbital construction and assembly, and control of extraterrestrial rovers. Automation

of these tasks can be expected to improve mission productivity and safety, increase versa-

tility, lessen dependence on ground systems, and reduce demands for crew involvement in

system operations.

1.1 Design of an Embedded Reasoning System

The aim of our work is to design an embedded reasoning system capable of assisting as-

tronauts in handling tasks such as those mentioned above. The system should be capable

of responding to and diagnosing abnormalities in space vehicle operations. It should be

able to integrate information from various parts of the space vehicle systems, and recognize

potential problems prior to alarm limits being exceeded.

The system should suggest and execute strategies for containing damage and for making

the system secure, without losing critical diagnostic information. It should be able to utilize

standard malfunction handling procedures, taking account of all the relevant factors that, in

crisis situations, are easily overlooked. False alarms and invalid parameter readings should

be detected, and alternative means for deducing parameter values utilized where possible.

In parallel with efforts to contain damage and temporarily reconfignre vehicle subsys-

tems, the system should be able to begin diagnosis of the problem and adjust reconfiguration

strategies as diagnostic information is obtained incrementally. The system should also be

capable of communicating with other systems to seek information, advise of critical con-

ditions, and avoid harmful interactions. Throughout this process, the system should be
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continuallyreevaluatingthe stateof the space vehicle,and be capableof changing focus

and respondingto more seriousproblems shouldthey occur.

Finally,the system should be able to explainthe reasonsfor any proposed courseof

actioninterms that arefamiliarto astronautsand missioncontrollers.Itshould be ableto

graphicallydisplayitsschematics,the proceduresitisintendingtoexecute,and the critical

parameter valuesupon which itsjudgement isbased.

This view of the system, togetherwith the strategicand operationalrequirementsof

NASA's space program, demands that the system be designedto

• Monitor and react in realtime to the changes in situationthat ariseduring space

operations.

• Rapidly selectand executethe most appropriateoperationalproceduresand strategies

in any givensituation.

• Represent and reasonabout criticalpropertiesthat determine operationaloptions,

such as the presentconfigurationor mode of the spacecraftand the relevantflight

rules.

• Be robust,i.e.,cope with modificationsto planned goalsand priorities,and not failin

the presenceofambiguous or inaccuratefeedbackfrom the operationalenvironment.

• Support distributedoperations,i.e.,interactand cooperatewith other systems that

are monitoringand controllingotherpartsof the spacecraft.

• Interactwith the astronautsand missioncontrollersin a clearlyunderstandableway,

i.e.,appear to behave as much likea rationalhuman assistantas possible.

• Allow establishedoperationalproceduresand strategiesto be changed easilywithout

extensivemodificationsof sourcecode when betterstrategiesare developed.

• Be extensible,i.e.,allowchanges in the configurationor designof the spacecraftand

itssubsystems to be incorporatedeasily.

• Be verifiable,i.e.,providea dear meaning forthe knowledge representedinthe system

and to ensurethat the system behaves correctlywith respectto thisknowledge.

1.2 Previous Approaches

Previous attempts to design embedded reasoning systems have been able to accomplish

few of the goalsmentioned above. These approaches axe discussedbrieflyin the following

sections.
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1.2.1 Conventional Software

It is highly unlikely that systems based on conventional automation techniques would be

able to achieve the performance criteria discussed above. Such systems are usually very

inflexible and unresponsive to the skill level of the operators using them. The control and

diagnostic procedures that are used cannot be matched to the exigencies of the current

situation nor can they cope with reconfiguration or modification of the underlying space-

vehicle systems. Performance of tasks cannot be guided by useful advice from astronauts

and technicians and, when a given task cannot be performed, no explanation is given as to

the cause of failure. Because conventional systems perform a prescribed sequence of tests

and actions, they cannot utilize knowledge of a particular situation to focus attention on

more likely trouble spots. Consequently, real-time performance is highly unsatisfactory.

They lack robustness, as they cannot fall back on other, perhaps less optimal, operational

procedures if the current one fails to achieve its purpose. Furthermore, it is difficult and

costly to modify or improve the encoded operational and malfunction-handling strategies

and procedures.

1.2.2 Conventional Expert Systems

Conventional expert systems are not designed to handle effectively the reasoning and plan-

Rang that must be performed under dynamic, real-time constraints. Unless one is concerned

solely with simple monitoring tasks, it is essential that any embedded reasoning system be

able to reason about actions and plans. Most existing real-time expert systems provide

means for the system to interact with its environment through sensors and effectors, but

their representations and reasoning capabilities differ little from those of conventional ex-

pert systems. These systems are far too weak to be used effectively for the kind of complex

operations with which we axe concerned. One must take the notions of actions and plans

seriously, and utilize representations and reasoning mechanisms suited to handling these

entities. A review of existing real-time reasoning systems and their shortcomings can be

found in reference [10].

Another major obstacle to the use of conventional rule-based expert systems is that

space operations require the use of a great variety of operational procedures. Conventional

expert systems axe simply not designed to represent or utilize such procedural knowledge.

The various tests and actions performed on a spacecraft have diverse outcomes with different

implications in different contexts. The only way to represent this in a rule-based formalism

is to keep track of the procedural context by the use of so-called control conditions. This

form of representation becomes very clumsy, reduces efficiency, and nullifies most of the

desirable properties of an expert system. In essence, the rule-based approach makes things

implicit that should be explicit (i.e., the flow of control) and makes things explicit that

should be implicit (i.e., the context).
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With theadditionof the controlconditions necessary to represent procedural informa-

tion, extensibility and robustness are lost; each control condition must be unique and should

not be used by any other rule other than the one for which it was intended. Explanatory

capacity is poor, as there is no direct access to the entire procedure; each rule must be ex-

plicated in isolation - with no satisfactory explanation for the meaning or use of the control

conditions. Moreover, the validity of a rule containing a control condition depends on the

validity of the rule or rules that inserted the control condition into the database, which in

turn depend on the rules that inserted their control conditions into the database, and so on.

One could never be certain that a rule would not be invoked unexpectedly, with perhaps

catastrophic effects. Furthermore, and perhaps most importantly, it is not possible for the

system to reason about a procedure as a whole - for example, to assess its usefulness or

criticality in a given situation.

Experience in trying to apply conventional expert systems to problems in fault diagnosis

and maintenance has shown that these difficulties are severe. To overcome them, some

expert systems offer facilities for representing procedural knowledge (e.g., Centaur [1]).

In most cases, however, such procedures axe represented simply by LISP code (or some

equivalent) that can be invoked via the database. The procedures are ad hoc additions,

have limited control constructs, cannot be reasoned about, and cannot be interrupted on

the basis of newly observed data or newly established goals. 1

1.2.3 Planning Systems

Most existingarchitecturesforembedded planning systems consistof a plan constructor

and a plan executor.As a rule,the plan constructorformulatesan entirecourseof action

beforecommencing executionof the plan [14].Execution isusuallymonitored to ensure

that the plan willculminate in the desiredeffects;ifitdoes not, the system can return

controlto the plan constructorso thatitmay modify the existingplan appropriately.

However, in real-worlddomains, much of the informationabout how best to achieve

a given goal isacquired during plan execution. For example, the choiceof how to best

normalize tank pressurewhile handling a jet failuremay depend on observationsmade

during the diagnosticprocess.In such situations,one cannot use a system thatplansin full

priorto commencing execution.

Real-timeconstraintspose yet furtherproblems for tradition_IIystructuredplanning

and reasoningsystems. First,the planning and deductivetechniquestypicallyused by

thesesystems axe very time consuming. While thismay be acceptablein some situations,

itisnot suitedto domains where replanningisfrequentlynecessaryand where system vi-

abilitydepends on readinessto act. Second, traditionalplanning systems usuallyprovide

ITheimpracticalityofutilizingstandardexpert systems to representproceduralknowledgeisdiscussed

in greater detail in reference [8].
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nomechanismsfor responding to new situations or goals during plan execution, let alone

during plan formation. Yet the very survival of an autonomous system may depend on its

ability to react to new situations and to modify its goals and intentions accordingly. For

example, a space-station robot should be capable of deferring work on an onboard experi-

ment if it notices something more critical, such as a possible jet malfunction. While many

existing planners have replanning capabilities, none have yet accommodated modifications

to the system's underlying set of goal priorities.

Furthermore, traditional planning systems have been designed for constructing plans

solely from knowledge about the primitive actions performable by the system. However,

many plans are not constructed from first principles, but from knowledge acquired in a

variety of other ways -- for example, by being told, by learning, or through training.

Moreover, these plans may be very complex, involving a variety of control constructs (such

as iteration and recursion) that are normally not part of the repertoire of conventional

planning systems. Thus, although it is obviously desirable that an embedded system be

capable of forming plans from first principles, it is also important that the system possess

a wealth of precompiled procedural knowledge about how to function in the world [6].

1.2.4 Robotic Controllers

A number of systems developed for the control of robots and other real-time processes do

have a high degree of reactivity [3, 9]. Such architectures could lead to more viable and

robust systems than the traditionally structured planning systems. Yet most of this work

has not addressed the issues of general problem-solving and commonsense reasoning; the

work is instead almost exclusively devoted to problems of navigation and execution of low-

level actions. It remains to extend or integrate these techniques with systems that have the

ability to completely change goal priorities, to modify, defer, or abandon current plans, and

to reason about what is best to do in light of the current situation.

1.3 Approach

To achieve the kind of behavior discussed above, the architecture of the reasoning system

should be both goal-directed and reactive. That is, while seeking to attain specific goals,

the system should also be able to react appropriately to new situations in real time. In

particular, it should be able to completely alter focus and goal priorities as circumstances

change. In addition, the system should be able to reflect on its own reasoning processes. It

should be able to choose when to change goals, when to plan and when to act, and how to

use effectively its deductive capabilities.

To facilitate cooperation with other systems as well as astronauts and other users, the

very design of the system should be based on principles of rational interaction. In particular,



it shouldbepossibleto ascribebeliefs, goals, and intentions to the system, and to interact

with it in terms of these psychological attitudes. In turn, the system itself should be able

to reason about and utilize information regarding the beliefs, goals, and intentions of other

systems or agents.

SRI International has been conducting research over a number of years into the design

of systems having these properties. The set of techniques and concepts are called Procedural

Reasoning Systems [5, 6, 7, 8].

1.4 This Report

In previous reports to NASA we focussed primarilyon the representation and use of proce-

dural knowledge. In this report, we shall concentrate on those aspects of the problem that

are critical in the design of embedded reasoning and planning systems.

Chapter 2 contains an overview of the Procedural Reasoning System developed at Ski.

Chapter 3 describes some critical system functionalities that are required in this and similar

applications. Chapter 4 describes the application domain and provides various examples

of system operation. This chapter is perhaps the most interesting for those who are not

interested in technical details and can be read prior to Chapters 2 and 3. Conclusions are

presented in Chapter 5.
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Chapter 2

Overview of the Procedural

Reasoning System

As the sample problem domain, we chose the task of malfunction handling for the Reaction

Control System (KCS) of NASA's space shuttle. The shuttle contains three such systems

- one forward and two aft. Each is a relatively complex propulsion system that is used

to control the attitude of the shuttle. A part of one of the malfunction procedures from

NASA's malfunction handling manuals is shown in Figure 2.1. These procedures can be

viewed as unelaborated plans of action, and are designed to be executed in a complex and

changing environment.

The reasoning and planning system that we applied to this problem is called a Procedural

Reasoning System (PRS) [6, 8]. PRS consists of a database containing current beliefs or facts

about the world; a set of current goals to be realized; a set of plans (which, for historical

reasons, axe called Knowledge Areas or KAs) describing how certain sequences of actions

and tests may be performed to achieve given goals or to react to particular situations;

and an intention structure containing all currently active (executing) KAs. An interpreter

(or inference mechanism) manipulates these components, selecting appropriate plans based

on the system's beliefs and goals, placing those selected on the intention structure, and

executing them.

The basic structure of PItS is shown in Figure 2.2. The system interacts with its

environment (including other systems) through its database (which acquires new beliefs in

response to changes in the environment) and through the actions that it performs as it

executes its intentions.

2.1 The System Database

The contents of the PRS database may be viewed as representing the current beliefs of the

system. Some of these beliefs axe provided initially by the system user. Typically, these

9
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will include facts about static properties of the application domain, such as the structure

of some subsystem or the physical laws that must be obeyed by certain mechanical compo-

nents. Other beliefs axe derived by PRS itself as it executes its KAs. These will typically

be current observations about the world or conclusions derived by the system from these

observations, and these may change over time. For example, at some times PRS may be-

lieve that the pressure of an oxidizer tank is within acceptable operating limits, at other

times not. Updates to the database therefore necessitate the use of consistency maintenance

techniques.

The database itself consists of a set of state descriptions describing what is [believed to

be] true at the current instant. We use first-order predicate calculus for the state descrip-

tion language. State descriptions can contain variables (implicitly assumed to be univer-

sally quantified) 1 and the usual logical connectives (A, V, and -% representing respectively

conjunction, disjunction, and negation). A sample set of database beliefs for the RCS

application is given below.

(type manifold frcs-ox-manf-l)

('_y]_e p-xdcr frcs-ox-manf-l-p-xdcr)

(type valve frcs°fu-tk-isol-12-valve)

ILogicalvariablesarerepresentedinPRS by names with a $ prefix(seeSection3.12).
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(part-of frcs-ox frcs-ox-manf-1)

(associated-uni_ frcs-ox-manf-1-p-xdcr frcs-ox-manf-1)

(connects frcs-ol-tk-isol-12-valve frcs-ox-tk frcs-ox-_k-12-1eg)

(status frcs-ox-manf-l-p-xdcr good)

(position frcs-ox-_k-iso1-12-valve op)

(value frcs-ox-manf-l-p-xdcr 245)

The firstthree facts represent type information. For example, the third fact states that

the object named frcs-fu-tk-iso1-12-valve is a valve. The next three facts represent

structural information, describingin thiscase a part-whole relationship,the positioning of a

sensor,and a valve connection within the system. The lastthree factsdescribe dynamic facts

that represent the current status and parameter values of the system. In the application

explored here, over 650 such facts are utilizedfor the forward RCS alone.

State descriptions that describe internalsystem states axe called metalevel expressions.

The basic metalevel predicates and functions are predefined by the system. For example,

the metalevel expression (*goal g) is true ifg isa current goal of the system. 2.

Given such a database, the diagnostic procedures can make use of this information to

perform what might be considered simple commonsense tasks for an astronaut. For exam-

ple, the instruction to _return to normal configuration except leave mTected tank isolation

valves,manifolds, and corresponding cross-feed valves closed" (Figure 2.1) can be directly

represented and reasoned about. In particular,the instruction can be represented in a way

that isimpervious to system reconfiguration,isnot hard-wired to particular identifiers,and

can be used for any of the three reaction control systems on the shuttle.

2.2 Goals

Unlike most AI planning and reasoning systems, PRS goals represent desired _haviors of

the system, rather than staticworld states that axe to be eventually achieved. Hence goals

axe expressed as conditions over some interval of time (i.e.,over some sequence of world

states).A given action (or sequence of actions) issaid to s,cceed in achieving a given goal

ifitsexecution resultsin a behavior that satisfiesthe goal description.

Goal behaviors can be described by applying a temporal operator to a state description.

Three temporal operators axe currently being used. The expression (!p), where p issome

2We adopt the convention that metalevel predicates that are prefixed with an asterisk denote attitudes

(e.g., goals, beliefs, oF intentions) of the system itse|f; attitudes o_ other _q_ents ate represented by predicates

without the uterisk ud take an additional argument (the name of the _gent). For historical reasons, we

also use the predicate *fact synonymously with *bellef
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state description (possibly involving logical connectives), is true of a sequence of states if p is

true of the last state in the sequence; that is, it denotes those behaviors that achieve p. Thus

we might use the behavior description (! (posi_cion frcs-fu-tk-isol-12-valve cl)) to

describethe goalto closevalvefrcs-fu-tk-isol-12-valve.

The expression(?p) is true of a sequence of statesifp is true of the firststatein

the sequence. That is,itcan be consideredto denote those behaviorsthat resultfrom a

successfultestforp. Let'sexamine thisnotionmore carefully.We callan actiona testfor

a conditionp ifsuccessfulcompletionof the actionguarantees that p were truejustprior

to beginningthe action.For example, imagine an actiona such that,ifp were truejust

priortoexecutinga,a certaincondition,q say,would be observed at itscompletion(e.g.,a

might be theactionofdippinglitmuspaper ina solution,q the conditionthatthe paper be

red,and p the conditionthatthe solutionbe acidic).Clearly,ifq isobserved,the sequence

of statesinvolvedin performing a must have been such thatp istrueof the firstof these

states.On the other hand, ifq isnot observed,p may not be trueof the firststatein the

sequence. Thus, a willcount as a testforp ifitsignalssuccesswhen q isobserved and

signalsfailureotherwise.

Finally,(#p) iftrueifp ispreserved(ismaintained invariant)throughout the sequence.

Usually,when one establishesa goalofmaintenance,itisintended that thatgoalbe main-

taineduntilsome conditionbecomes true. Thus, goals of maintenance usuallyappear in

the form (lip^ !q),meaning to preservep untilq isachieved.

Behavior descriptionscan be combined by means of the logicaloperators^ and V,

representing,respectively,the conjunctionand disjunctionof the component expressions.

Existentiallyquantifiedvariablesare representedby symbols prefixedwith a $ sign.

As with statedescriptions,behavior descriptionsaxe not restrictedto describingthe

externalenvironment,but can alsocharacterizethe internalbehavior of the system. Such

behavior specificationsaxe calledmetalevelbehavior specifications.One important met-

alevelbehaviorisdescribedby an expressionof the form (=> p). This specifiesa behavior

thatplacesthe statedescriptionp in the system database.Another way of describingthis

behavioris(!(*belief p)).

2.3 Knowledge Areas

Knowledge about how to accomplish given goals or react to certain situations is represented

in PRS by declarative procedure specifications called Knowledge Aree8 (KAs). Each KA

consists of a body, which describes the steps of the procedure, and an invocation condition,

which specifies under what situations the KA is useful. Together, the invocation condition

and body of a KA express a declarative fact about the results and utility of performing

certain sequences of actions under certain conditions [6].
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The body of a KA isrepresentedas a graphic network and can be viewed as a plan

or plan schema. Each arc of the network islabeledwith a goal to be achieved by the

system. This isin contrastto traditionalprograznming languages or flowcharts,which

labeleach step eitherwith some primitivecommand or some specificsubroutineto be

called.By establishinggoalsratherthan callingnamed subroutines,the system isable to

reasonabout and choosethe most effectivemeans foraccomplishingthosegoalsin thegiven

circumstances.This allowsPItS to reactappropriatelyina greatrange of situationsand in

the presenceof degraded or uncertaininformation.Moreover, the knowledge expressedin

any given KA islaxgelyindependentofother KAs, thereby providinga very highdegreeof

modularity and verifiability.Itisthus possibleto builddomain knowledge incrementally,

with each component KA having a well-definedand easilyunderstood semantics.

The invocationconditionhas two components: a triggeringpart and a contextpart.

Both must be satisfiedforthe KA to be invoked.The triggeringpartisa logicalexpression

describingthe eventsthatmust occur forthe KA to be executed.Usually,theseconsistof

some change in system goals(inwhich case,the KA isinvokedin a goal-directedfashion)

or system beliefs(resultingin data-directedor reactiveinvocation),a_d may involveboth.

The contextpartisa logicalexpressionspecifyingthoseconditionsthatmust be trueof the

currentstateforthe KA to be executed.

There axe some propertiesof KAs that axe crucialfor the correctfunctioningof the

system. For example, ifthe KA isinvoked by the establishmentof some new goal,itis

important to know whether or not successfulexecutionof the KA (i.e.,reachingan end-

node) realizesthatgoal.These KA propertiescould be placedinthe system database along

with the otherfactsthataxe pertinentto the applicationdomain. However, forconvenience

we placethesefactsin predefinedslotsin the KA structureitself.

Similarly,KA propertiesthataxe not essentialto the functioningofthe interpreterbut

which may be requiredby application-specificmetalevelKAs can eitherbe placed in the

system database or in a specialpropertyslotof each KA. Such properties,for example,

might includeinformationon the likelihoodof successof the KA or itsaverageexecution

time.

A typicalexample of part of a KA isgiven in figure2.3. Itdescribesa procedure to

isolatea leakin an RCS. The invocationpart describesunder what conditionsthisKA is

useful.In thiscase,the KA isconsideredusefulwhenever the system acquiresthe goal to

isolatea leakin an RCS ($p-sys),provided the varioustype and structuralfactsgiven in

the contextpart axe true.(In determiningthe truthvalueof the invocationpart,some of

the variablesappeaxingin the invocationpart willbe bound to specificidentifiers.Indeed,

in thiscase,allthe variableswillbe so bound.)

The KA body describeswhat to do ifthe KA ischosen forexecution.Execution begins

at the s_;axznode in the network, and proceeds by followingarcsthrough the network.

Execution completes ifexecutionreachesa finishnode (a node with no exitingarcs).If
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Figure 2.3: Portion of a KA for Leak Isolation
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more than one arc emanates from a givennode, any one of the arcsemanating from that

node may be traversed.To traversean arc,the system must either(1)determine from the

database thatthe goalhas alreadybeen achievedor (2)finda KA (procedure)thatachieves

the goallabellingthat arc.For example, to traversethe arc emanating from the startnode

requireseitherthat the system be alreadysecuredor that some KA forsecuringthe I%CS

be found and successfullyexecuted. Similarly,to transitthe next arc requiresthat some

KA be found for determining the pressure change ($del_a-pl) in the manifold Smanfl. If

the system fails to traverse an arc emanating from some node, other arcs emanating from

that node may be tried. If, however, the system fails to achieve any of the goals on arcs

emanating from the node, the KA as a whole will fail. For example, since only one arc

emanates from the start node in Figure 2.3, if all attempts to secure the RCS fail, this

procedure for isolating a leak in the system will also fail. The full KA for this procedure

consists of over 45 nodes and is the largest in the system.

Important properties of the KA are represented in the slots on the left side of the HA

structure. For example, the goal achiever slot is set to T (true), representing the fact

that, upon successfully completing this KA, the goal that triggered execution will have

been achieved.

Some KAs have no bodies. These are the primitive KAs of the system and have associ-

ated with them some primitive action that is directly performable by the system. Clearly,

execution of any KA must eventually reduce to the execution of sequences of primitive KAs

(unless, of course, each of the subguals of the KA has already been achieved).

The set of KAs in a PRS application system not only consists of procedural knowledge

about a specific domain, but also includes metalevel KAs -- that is, information about

the manipulation of the beliefs, desires, and intentions of PItS itself. For example, typical

metalevel KAs encode various methods for choosing among multiple applicable KAs, deter-

mining how to achieve a conjunction or disjunction of goals, and computing the amount of

additional reasoning that can be undertaken, given the real-time constraints of the problem

domain. In achieving this, these metalevel KAs make use of information about KAs that is

contained in the system database or in the property slots of the KA structures.

In the application described herein, about 70 object-level KAs were used together with

about 15 metalevel KAs.

2.4 The Intention Structure

The intentionstructurecontainsallthose tasksthat the system has adopted (chosen)for

execution,eitherimmediately or at some latertime. These adopted tasksare calledin-

tentions.A singleintentionconsistsof some top-levelKA or goal,togetherwith allthe

various[sub-]KAs thatare currentlybeing used as means to fulfillingthe requirementsof

the top-levelKA. However, at any given moment, the intentionstructuremay contain a

16



number of such intentions, some of which may be suspended or deferred, some of which

may be waiting for certain conditions to hold prior to activation, and some of which may

be metalevel intentions for deciding among various alternative courses of action.

For example, in handling a malfunction in the R,CS the system might have, at some

instant, three tasks (intentions) on the intention structure: one suspended while waiting for,

say, the fuel-tank pressure to decrease below some designated threshold; another suspended

after having just posted some goal that is to be accomplished (such as the securing of

the RCS); and the third (a metalevel procedure) being executed to decide which way to

accomplish that goal.

The order in which these intentions are executed is determined by metalevel KAs which

themselves must be adopted as intentions to become effective. This metalevel control allows

reasoning in arbitrarily complex ways about the scheduling of these tasks, while retaining

the ability to respond quickly and appropriately to new goals and beliefs.

2.5 The System Interpreter

The PRS interpreter runs the entire system. From a conceptual standpoint, it operates in

a relatively simple way. At any particular time, certain goals are active in the system and

certain beliefs are held in the system database. Given these extant goals and beliefs, a subset

of KAs in the system will be applicable (i.e., relevant). One or more of these applicable

KAs will then be chosen for execution by placing them on the intention structure.

In determining KA applicability, the interpreter will not automatically perform any

deduction. Both beliefs and goals are matched by using unification only. This allows

appropriate KAs to be selected very quickly and guarantees a certain degree of reactivity.

If we allowed arbitrary deductions to be made, we could no longer furnish such a guarantee.

However, PR.S is always able to perform any deductions it chooses by invoking appropriate

metalevel KAs. These metalevel KAs are themselves interruptible, so that the reactivity of

the system is retained.

In the course of executing the chosen KA, new subgoals will be posted and new beliefs

derived. Changes in the environment may also modify the existing beliefs of the system.

When new goals are established, the interpreter checks to see if any new KAs are relevant,

chooses one or more, places them on the intention structure, selects an item from the

intention structure, and begins executing it. Likewise, whenever a new belief is added to

the database, the interpreter will perform appropriate consistency maintenance procedures

and possibly activate other relevant KAs. During this process, various metalevel KAs may

also be called upon to make choices among alternative paths of execution, choose among

multiple applicable KAs, decide what intentions to execute next, decompose composite goals

into achievable components, and make other decisions.
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Unlesssome new belief or goal activates some new KA, PRS will try to fulfill any

intentions it has previously decided upon. But if some importaut new fact or goal does

become known, PItS will reassess its current intentions, and perhaps choose to work on

something else. Thus, not all options that axe considered by PRS arise as a result of means-

end reasoning. Changes in the environment may lead to changes in the system's beliefs,

which in turn may result in the consideration of new plans that are not means to any already

intended end. PRS is therefore able to change its focua completely and pursue new goals

when the situation warrants it. In many space operations, this happens quite frequently

as emergencies of various degrees of severity occur in the process of handling other, less

critical tasks. PKS can even alter its intentions regarding its own reasoning processes - for

example, it may decide that, given the current situation, it has no time for further reasoning

and so must act immediately.

2.6 Multiple Asynchronous Systems

In some applications, it is necessary to monitor and process many sources of information

at the same time. Because of this, PItS was designed to allow several instantiations of the

basic system to run in parallel. Each PRS instantiation has its own database, goals, and KA

library, and operates asynchronously relative to other PRS instantiations. Communication

among the vaxious PRS instantiations is achieved by message passing. The messages are

written into the database of the receiving PILS, which must then decide what to do, if

anything, with the new information. As a rule, this decision is made by a fact-invoked KA

(in the receiving PRS), which responds upon receipt of the external message. In accordance

with such factors as the reliability of the sender, the type of message, and its own beliefs,

goals, and current intentions, the receiver determines what to do about the message -- for

example, to acquire a new belief, establish a new goal, or modify an existing intention.

In this particular application, two instances of PRS were set up. One, called INTERFACE,

handles most of the low-level sensor readings, controls effectors, and checks for faults in these

components. The other, called misleadingly RCS, contains most of the high-level malfunction

procedures, much as they appear in the malfunction handling manuals for the shuttle.

As an example of the communication between these two systems, consider the case in

which INTERFACE wishesto adviseRCS thatthe valvefrcs-fu-tk-isol-12-valve isclosed.

To do so,itwould send RCS the message

(asserted INTERFACE (position frcs-fu-tk-isol-12-valve el))

RCS could then choose what to do with thismessage, given appropriateKAs for re-

sponding to it. Note that the beliefthat the valve isdosed isnot directlyinsertedinto

the database of the recipient.In complex domains in which processesor agentsmay be

unreliable,itispreferableto storethe factthat some agent (IrrERFACE in thiscase)has

assertedsomething, without committing to believingthat assertion.The recipientthen
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has the opportunity (using appropriate KAs) to accept the asserted fact and add it to its

database, to reject it as unreliable, or to combine it with other evidence in some other way.

For similar reasons, when some PRS agent, A, wants another PRS agent, B, to adopt

some particular goal, the only way this can be effected is by passing B a message that

requests that B establish the given goal. That is, A cannot directly estab_sh a goal for B;

the best A can do is to get B to believe that A desires that B adopt the given goal. For

example, ifRCS wished the INTERFACE to closea valvefrcs-fu-tk-iso1-i2-valve, RCS

would send INTERFACE the message

(requested RCS (!(position frcs-fu-tk-isol-12-valv¢ ci)))
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Chapter 3

Critical Features of the System

In this chapter, we review in greater depth some of the features of PRS that are critical to

its successful operation as an embedded real-time reasoning system.

3.1 Invocation of KAs

The applicability of a KA is specified by means of its associated invocation condition. The

invocation condition consists of two parts:

1. A logical expression specifying some pattern of initiating events

2. A logical expression specifying the contezt of invocation.

An initiating event is the acquisition of a new belief or the establishment of a new goal

or intention. For example, if the initiating condition of a given KA were

(*fact (position frcs-fu-tk-isol-12-valve el)),

the KA would be invoked whenever the system acquired the belief that the

frcs-fu-tk-isol-12-valve was dosed. Thus, it is the change in the system's beliefs that

triggers the KA. Similarly, if the initiating condition were

(*goal (! (secured frcs))),

the KA would be invoked upon the system acquiring that goal.

The context specifies additional conditions that must be true for the KA to be invoked,

once it has been triggered by some initiating event. Thus, if the context of a KA were

(*fact (position frcs-fu-he-tk-A-valve el)), the KA could only be invoked if the

system believed that the frcn-fu-ho-tk-A-valve were closed.

Let's say that I is the initiating condition for a given KA and C is its invocation context.

Furthermore, let us assume that at moment t the system's state (i.e., its beliefs, goals, and

intentions) is S and at the next moment t' the state is S'. Then the KA will be invoked if

and only if
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wherez 1--y is true if the truth of expression y can be directly deduced upon unifying each

of y's components with the components of x.

It is important to note that the only way a KA can be invoked is by the occurrence of

some initiating event or change in the system's beliefs, goals, or intentions. Should such an

event trigger a KA, and that KA not be immediately adopted as an intention, then that event

cannot re-trigger the KA on subsequent cycles. (Of course, some subsequent occurrence of

the same type of event could trigger the KA afresh.) What are the consequences of this?

Imagine that two different alarms, alarm-1 and alarm-2, are sounded at once, each

triggering a different KA (say, KA-1 and KA-2, respectively). As the system has more

than one applicable KA from which to choose, one or more meta-KAs will be invoked to

determine what to do. If, as a result of the metalevel processing, one of these KAs is chosen

for adoption (say KA-1), the other invoked KA will simply be discarded. In this case,

although the system would "know" that alarm-2 had sounded (it would be in the system

database), it would take no action with respect to that alarm. This need not mean that it

would never take any action in response to that alarm, although usually this would be so.

For example, there may be some KA that is invoked every now and then to check on things

that have been left unattended. Such a KA could notice that alarm-2 was on, that nothing

had been done about it, and then, indirectly, invoke KA-2 to respond to it.

The other possibility, dependent on the metalevel processing, is that both KAs are

adopted as intentions. In this case, both alarms will be attended to. The order in which

KA-1 and KA-2 are evaluated will depend on the ordering of their corresponding intentions

on the intention structure; for example, both could be pursued in parallel, or one could be

deferred until the other was finished. We say more about the intention structure below.

In summary, the system must respond to events -- and form intentions appropriate to

those events -- as they occur. As changes to elements of the system's state are, in most

cases, rare in comparison to the total number of state elements, system efficiency (and

response time) is thereby substantially enhanced. On the other hand, as at any time the

current state of the system is determined entirely by its history of changes, 1 we loose no

deductive capabilities by this more restricted form of KA activation.

IThis assumes an empty initial state. But if the initial state, i say, is not empty, we can transform the

problem into an equivalent one that has an empty initial state and that begins with an event that directly

brings about i.
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3.2 Goals and Intentions

Goals are of two kinds: intrinsic goals and operational goals. Intrinsic goals 2 are those

that the system acquires directly from some specific sources. The only source of intrinsic

goalsfor the shuttleimplementation isthe user (astronautor missioncontroller),who has

the power to impose arbitrarygoalson the system. In other implementations,one could

envisageothersourcescapableofimposing such goals.For example, an autonomous system

being controlledby PRS might allowSpecialsensorsto generate intrinsicgoals,such as to

rechargebatterieswhen batterypower decreasesbelow a certainthreshold,or to escapein

the presenceofan overwhelming foe.

Operationalgoals are those that the system acquiresin attempting to fulfillsome in-

tention.That is,operationalgoalsare those thatare establishedduringexecutionof a KA

thathas been previouslyadopted as an intention.Thus, operationalgoalsarealwaysmeans

to some end, although thatend may not always be explicit.For example, when a KA is

invoked by the occurrenceofa new system goal,9,allgoalsin the body of the KA willbe

means toward achievingg. On the other hand, when a KA isinvokedby the occurrenceofa

new system belief,the goalsappearinginthe KA axe means ofresponding to the aquisition

of that belief,but the end resultthe system isaiming to achieveisleftunspecified.For

example, upon the activationofsome alarm,a KA thatdiagnosesthe faultand correctsit

might be invoked.The reasonforinvokingthisKA (presumably,to maintain the integrity

of the space-craft)isnot specifiedanywhere,yet each ofthe goalsoccurringin thisKA are

means to that (unspecified)end.

A KA invoked by the acquisitionof some intrinsicgoal or by some change in system

beliefscan giverise,ifadopted by the system,to a new system intention.In thiscase,the

initiatingevent iscalledthe put/roseof the intentionand the KA so invoked iscalledthe

head of the intention.As the head KA isexecuted,itwillgiveriseto variousoperational

goals.The KAs that respond to theseoperationalgoalswillform part of the originating

intention,togetherwith any KAs that theseKAs in turninvoke,and so on. Thus, a single

intentionconsistsofa head KA (invokedeitherby an intrinsicgoalor new belief),together

with the variousotherKAs thatare utilizedin attempting to executethe head KA.

3.3 The Establishment and Removal of Goals

Intrinsic goals axe established by specific external sources and, as with beliefs, must be

responded to immediately if at all. As with beliefs, they will be remembered, even if no

intention is formed to accomplish them. They will be removed if explicitly requested (by

the external source that established them) or if the system comes to believe that they are

accomplished (either through its own efforts or those of some other agent).

2Some phi]osphers would call these de_imJ.
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Operationalgoalsaxe establishedby the attempted executionof some HA that ispart

ofsome intentionof the system. Should the system attempt to achievean operationalgoal

and .fail,thatgoalwillbe reestablished,and another attempt made to achieveit.This will

continueuntilthe system comes to believeeitherthatthe goalisaccomplished,through its

own effortsor thoseofsome other agent,or that the goal cannot be readilyaccomplished.

Once thisstateisreached,the goalwillbe dropped.

This raisestwo relatedissues:what other attempts axe made to achievethe goal and

how does the system come to believea goal cannot be readilyaccomplished? We shall

answer the latterquestionfirst.There axe two ways the system can come to believethat a

goalcannot be accomplished.One way isto deduce it,but thiswilldepend on the provision

ofappropriatemetalevelKAs forperforming the deduction and upon theirbeing invoked.

The otherway issimply to failin allattempts at achievingit.

Thisbringsus tothe formerquestion-- what attempts does the system make toachieve

a givengoal? The system currentlytries,exactlyonce,every possibleKA instancethat can

possiblyachievethe goal.Itdoes not ask thatpreviouslyachievedgoalsbe reachieved(in

some other way), nor does ittry the same KA instancemore than once. In thissense,it

isequivalentto a "fast-backtrack"parser[13].There isgood reasonforat leastthe firstof

thesechoices.

Unlikeplanning some courseof actionor parsingsentences,once some goal has been

achievedthereis no point in tryingother ways to achieveit,even ifthese may benefit

attempts to achievesubsequentgoals.Or more accurately,thereisno reason to constrain

oneselftolook onlyat otherways to achievethisgoal.For example, considerthat we wish

toachievesome goM f and then some goalg. Let'ssay that,in achievingf, some condition

p ismade true(perhaps as a sideeffectof the actionstaken to achievef). Unfortunately,

with p true,itprovesimpossibleto achieveg with the KAs at our disposal(because,let's

imagine,_p ispartofthe contextof the invocationpartof allKAs that achieveg). Now, a

planneror full-backtrackparsermight reattempt to achievef some other way, in the hope

thatitwould succeedwithout incurringthe troublesomeside-effect.But PRS has actuall!#

achievedf - mad alsop - so that thereisno use tryingother methods to reachievethat

goal!Instead,one shouldnow try to achieve-_p,preferablywhile maintainingf.

Now, eitherthereisa way to achieve-_por thereisnot. Ifthereisnot,thereisnothing

we can do. Ifwe can achieve-,p,and we axecontenttotryit,then we could rewritethe KAs

thatachieveg to have -_pas theirfirstsubgoal,ratherthan as a constrainton invocation.

In thisway, itispossibleto write allKAs in a form whereby forbiddingPRS to retry

successfullyachievedgoalsdoes not restrictitscapabilities.

The remainingissueconcerns the number of trieswe make of a singleKA instanceto

achievea givengoM. Itis,ofcourse,quitepossiblethat,where thefirsttry does not succeed,

the nextwill,evenifwe carryout exactlythesame actionsaswe did the firsttime. However,

to determineifretryingcouldsucceedwould,in most practicalcases,requireknowledge of
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the state of the world that goes well beyond that available to the system. Assuming the

lack of such knowledge, we took the reasonable course of allowing at most one try for each

KA instance. This clearly affects the capabilities of the system - in some cases, it may be

that trying twice would succeed where trying once does not.

Once all attempts at achieving a given goal have in this way been exhausted, it is still

possible for some metalevel KA to respond to this failure and invoke yet other means to

achieve the goal. For example, a meta-KA could invoke certain deductive machinery, or

could decide to retry some KA instances that, although having been tried once, appear (for

some reason known to the meta-KA) to be worth trying again.

3.4 Goals over Sets of Objects

As so far described, goals can be one of three types, denoted (!p), (?p), and (#p), where p

is some condition of the state of the world. This condition has been restricted to formulas

of first-order predicate calculus, possibly containing existentially-quantified variables where

the scope of the existential includes the entire expression.

For example, consider the arc label ( ! (P $x $y) ) where $x has been bound to (f A $z)

and Sy and $z are unbound. The meaning of this expression is to try to achieve a state

that satisfies :1 Sy Sz . (P (f A Sz) $y). This is quite sufficient for most tasks, such as

the dosing of particular valves or the determination of particular transducer readings.

However, there are many other tasks for which it is convenient to quantify over all

objects having a certain property. For example, one might want to turn off all the lights

in the house, or close all affected manifolds. It would be convenient to represent such

conditions by expressions of the form ({ $y I p($y)} g($y)), where p($y) is a formula

containing at least one free occurrence of $y and g($y) is a goal formula also containing a

free occurrence of Sy. The meaning of this expression is that, for all Sy that satisfy p($y),

the goal g($y) is to be achieved.

As currently implemented, Pt{,S requires two steps to achieve this effect. The first collects

the set of objects upon which the action is to take effect, and the second then applies the

action to elements of that set. Moreover, for each action that we wish to operate on a set,

we must specify a new KA that is specifically designed for that purpose. An example of

this approach is shown in Figure 3.4. In this case, it is necessary to close all the valves of

the system in a specified order: first the manifold valves, then the propellant-tank valves,

and finally the helium-tank valves. This is clearly a cumbersome way to represent such

operations. We expect that subsequent implementations of PRS will use a form more

similar to that described in the paragraph above.

One has to be careful with the set operator. First, the set of objects must satisfy

the specified condition at the beginning of the interval over which the composite action is
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Figure 3.1: A KA with Goals over Sets of Objects
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performed. Second, the system willnot assume that itknows about allobjectsthat can

possiblysatisfya given predicateunlessthe predicateisspecifiedtobe close.d-world.In the

casethatthe predicateisnot so specified,a KA must be found thatmatches the composite

goaldirectly.(Itisnot necessarythatsuch KAs be abletoidentifyexplicitlyallthe specified

objects.For example, one can turn offallthe lightsin a house withoutidentifyingthem

simply by turningoffthe power supply to the house).

Third,any existentiallyquantifiedvariableappearinginp($y) willnot retainitsbinding

beyond the scope of the entiregoalexpression.This isbecause itsbindingmay depend on

the bindingofthe setvariable$y, and thisinformationisonlyretainedduringthe execution

of the goalg($y).

3.5 Conditional Intentions

Sometimes itisdesirableto form the intentionthat,when some conditionoccurs,some

actionshould be performed. We callthese conditionalintentions.Typically,we may get

to a certainpoint in a procedure (KA) where we want to suspend executionuntilsome

conditionisfound to be satisfied.

For example, afterhavingswitchedfrom a faultyregulatortoa properlyfunctioningone,

we may want to switchcontrolof the regulatorvalveto the on-board computers (GPC).

However, thiscannot be done untilthe pressurein the system drops below 312 psi,as

otherwisethe computers willassume a failurein the new regulatorand shut itoff.Thus,

one would liketo be ableto suspend furtherexecutionof the procedureuntilthe pressure

dropped below 312 psi,afterwhich executioncan proceed.

In PRS, conditionalintentionsare createdby means of certainmetalevelKAs. Their

effectisto suspend executionof some given intention,which then remains in a dormant

stateuntilthe appropriateactivationcondition(in the above case,a pressurebelow 312

psi)issatisfied(seeSection3.6).

Conditionalintentionsariseinmany othersituations;indeed,itwould be hard toimagine

an effectivereal-timereasoningsystem thatdid not requirethem. For example, conditional

intentionsare necessaryin the followingcases:

• When certaineventsmay be indicativeof a problem but allowancehas to be made

fortransienteffects;one oftenhas to wait untilany transientsdieaway.

• When sampling parameters overtime,such as when a rateofchange isrequired.

• When waitingfor a replyfrom a requestto another system or a user;itisoften

desirableto suspend the processmaking the requestuntilan answer isreceived,and

ifnot receivedwithina reasonabletime to adopt some other courseofaction.
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Figure 3.2: An Intention Structure

Of course, it is essential that, while waiting for an activation condition to become true,

the system continue to monitor the environment and continue to execute other intentions

as required. Thus, for example, while waiting for the pressure to drop below 312 psi, the

RCS system keeps monitoring the status of the shuttle, responds to any observed changes

in the situation (such as a failure in some other component), and performs any other tasks

demanded of it.

3.6 Intention Types

One of the most interesting features of PRS is the manipulation of intentions within the

intention structure. The purpose of this and the following two sections is to explain the

mechaafisms for manipulating the intention structure and how they can be customized to a

particular application.

The intention structure contains those KAs that have been chosen by the system to be

executed. The system commits to these intentions; it will "try its best" to achieve them and

plan its other activities in accord with them. The set of intentions comprising the intention

structure form a partial ordering such as shown in Figure 3.2. Those that are roots of this

graph (i.e., have no predecessors) are candidates for becoming the current intention. The

current intention is the one that is currently being executed, and is surrounded by two

small arrows in the figure. The directional arcs shown in the figure represent precedence

constraints on the intentions. That is, the intention earlier in the ordering (as defined

by the arcs in the partial order) must be finished (and thus disappear from the intention

structure) before intentions appearing later in the ordering. This precedence relationship

between intentions enables the system to establish priorities and other relationships between

intentions.

An intention can be in one of three possible states:
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Normal: This is the most common state. If such an intention is a root of the graph then

it can be activated. Otherwise, it must wait until all its predecessors are finished.

Sleeping: A sleeping (or conditional) intention is one whose execution is suspended, await-

ing some condition to be satisfied. To enter this state, an appropriate metalevel KA

must be utilized. This metalevel KA can be invoked by the intention that is to be

suspended or by some other intention outside it. The sleeping state implies the pres-

ence of an activation condition for the intention. This activation condition is a logical

expression evaluable in the environment of the intention. As long as it is false, the

intention is kept sleeping. As soon as it becomes true, the intention is put into a

woken state.

Woken: As its name implies, an intention is in a woken state if has been "awakened" after

having been in a sleeping state. The woken state is exactly the same as the normal

state, except that if there is more than one possible current intention, the system

will prefer the most recently woken one. As a result, the system will tend to activate

intentions which have just been awakened. As soon as such an intention has been

activated, the woken state is exited and the intention returns to the normal state.

3.7 Establishing Intentions -- The System Interpreter

Intentionsaxe establishedin two ways: (i) by the system interpreter;and (2) by partic-

ulax metaievelKAs. The operationof the interpreterin establishingintentionsisworth

examining. The main problem to be solvedisthat,on any cycle,a number of KAs may be

applicable.Itisthus necessaryto decidewhat to do with theseapplicableKAs -- in par-

ticulax,how many (ifany) to establishas intentionsand how toinsertthoseso chosen into

the intentionstructure.The notionof metalevelKAs was introducedto providemaximum

flexibility in making these decisions.

But we have to find a mechanism for bringing these metalevel KAs to bear at the

appropriate time. The way we chose to do this was to include in the invocation part of the

metalevel KA some condition on the number or kind of object-level KAs that are applicable

at each cycle. For example, a particular metalevel KA might be invoked on the basis of

there simply being more than one applicable object-level KA at the current moment.

To enable this scheme to work, we first have to determine which object-level KAs are

applicable on each cycle. This information becomes a new system belief. In particular,

on each cycle, the system acquires a belief about the set of KAs applicable on that cycle,

expressed as (soak z), where • is the list of applicable KAs. It is then determined whether

or not the aquisition of this new belief (i.e., (soak z)) trivets any new [metalevel] KAs.

If it does, the system acquires a new belief about the applicability of these metalevel KAs.

In fact, it does so simply by updating the belief (soak z) so that the list x now contains
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exactly those metalevel KAs that are now applicable. (The previous belief about applicable

object-level KAs is removed from the database and so, in a sense, is forgotten. However, it

is captured in the variable bindings of the invoked metalevel KAs.)

As PR.S places no restrictions upon the invocation conditions of metalevel KAs, it is quite

possible that more than one metalevel KA will be invoked at this stage. If this happens, we

will now be left with the problem of deciding which of these metalevel KAs to invoke. There

are a number of possible solutions to this problem. One would be simply to select one of

the metalevel KAs at random, on the assumption that all are equally good at making the

decision about which object-level KAs should be invoked. Another _ternative would be to

preassign priorities to the metalevel HAs and to invoke the one with the highest priority.

However, in keeping with our aim of providing maximum flexibility, the solution we chose

to adopt is to allow further metalevel KAs to operate on these lower-level metaKAs in the

same way that the lower-level metaKAs operated on the object-level KAs.

The process of invoking metalevel KAs is thus continued until no further KAs are

triggered. 3 At that point, there may still be a set of applicable HAs from which to choose.

It is then, and only then (i.e., only after failing to find any more applicable metalevel KAs),

that we select one of these KAs at random.

Thus it is seen that, when more than one KA is applicable, and in the absence of any

information about what is best to do, the system interpreter defaults to selecting one of

these KAs at random. With no metalevel KAs, the system would thus randomly select

one of the applicable object-level KAs. However, one usually provides metalevel KAs to

help make an informed choice about the object level KAs. The applicable metalevel KAs

themselves are subject to the same default action (i.e., one will be randomly selected) unless

there are yet other metalevel KAs available to make a choice among them. In the end, at

some level in the meta-hierarchy, the default action will be taken (of course, there may, at

that level, be only one KA to choose).

Once selected, the chosen KAs must be inserted into the intention structure. If a selected

KA arose due to an ezterna/goal or a fact, it will be inserted into the intention structure

as a new intention at the root of the structure. For example, this will be the case for

any metalevel KA that is invoked to decide among some set of applicable lower-level KAs.

Otherwise, the KA instance must have arisen as a result of some subgoal of some existing

intention, and will be "grown" (i.e., attached) as a subKA of that intention.

3Currently, it is left to the user to ensure that the triggering of higher and higher levels of metaKAs

terminates in a bounded time. This is not difficult for the user to achieve. For example, one could a._sign

each met&level KA to one of a finite set of fixed levels (types), and enforce the condition that HAs only

operate on others st the level below them in this finite hierarchy.
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Figure 3.3: A Metalevel KA

Manipulating Intentions -- Metalevel KAs

The only other way to establishintentionsisby invoking specialmetalevelKAs. These

providea varietyof optionsforinsertingKAs intothe intentionstructure.

There are four differentways in which an intentioncan be insertedintothe intention

structure:

I. As a subKA of the currentintention.

2. As a new intentionat the root of the intentionstructure;i.e.,priorto every other

intention,includingthe currentintentionifithas not finishedexecution.

3. As a new intentionthat has precedenceover some setof existingintentions.

4. As a new intentionthatwillbe initiatedonly aftersome setofexistingintentionshave

been executed.

For example, considerthe metalevelKA selecl;or-2in Figure3.3.The goals

(!(inzend ...)) and (:(intend-all-safety-before ...)) are satisfiedby metalevel

KAs that eventuallyestablishintentions,each in itsown way. In particular,the KA that

respondsto thefirstgoalinsertstheKA instancedirectlyafterthe currentintention,whereas
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the KA that responds to the second goal gives those object-level KAs that have the property

of being "safety handlers" priority over those that are not.

To construct sophisticated metalevel KAs, it is usually necessary to provide additional

information about KAs - for example, which are "safety handlers" or which are fact invoked

(see Figure 3.3). As mentioned previously, these properties can be stored in the system

database or, more conveniently, directly represented in the appropriate slots of the KA

structures.

Finally, it is important to be careful in the use of metalevel KAs. In particular, it

is sometimes quite difficult to foresee when the invocation condition of a metalevel KA

will become true. For example, consider the following activation condition, where soak

represents the set of KAs that are currently applicable:

(and (*facl; (soak Sx))

(*fact (equal 1 (lengl;h Sx))))

This condition will be true whenever there is exactly one applicable KA (i.e., the set of

applicable KAs, SX, contains only one member). A KA with such an invocation condition

will possibly loop on itself indefinitely! This is because the KA will repeatedly become the

single applicable KA, thus reactivating itself.

The initiating events for some of the more important metalevel KAs are listed below.

Some of these KAs are used to create new intentions, others to modify the intention structure

itself, and yet others to modify the status of exisiting intentions.

Intend the KA instance Sx:

Initiating Event: (*goal (! (intertd Sx)))

Intend all KA instances in the set Sx, but give priority to "safety handlers":

Initiating Event: (*goal (! (intend-all-safety-before Sx)))

Make the current intention sleep for $1: seconds:

Initiating Event: (*goal ( ! (sleep St) ))

Awake a sleeping intention:

Initiating Event: (and (*facl: (wake-up Sx)) (*fat1; (> (lengl;h $x) 0)))

Wait until the condition $c is true (the current intention is automatically put to sleep):

Initiating Event: (*goal ( ! (wai_:-unl:il $c) ))

3.9 Commitment to Intentions

P1LS commits to its intentions. That is, unless some particular metalevel KA intervenes,

PItS will perform its means-ends reasoning and other planning in the contezt of its ezisting

intentions. For example, consider that PRS has adopted the intention of achieving a goal g
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by accomplishingthe subgoalsgl, 02, and g3, in that order. In the process of determining

how to accomplish these subgoals, the system will not reconsider other means of achieving

g. That is, it is committed to achieving g by doing gl, 02, and g3, even if circumstances have

so changed that there is now a better way to achieve g than the one chosen. The gain here

is in reducing decision time -- in highly dynamic domains it is not possible to continually

reassess one's plans of action. What makes the approach workable is that the basis upon

which one chooses a particular plan of action is more often correct than not.

Of course, the system is not committed to its intentions forever. For example, as dis-

cussed in Section 3.3, if PRS determines that it cannot achieve g by doing gl, g2, and p3,

it will drop that plan and look for some other means of achieving g. Alternatively, it may

remember the basis for choosing one plan over another, and utilize appropriate metalevel

KAs to modify its intentions if support for that decision is subsequently found to be lacking.

It is not only in means-ends reasoning that PRS's commitment to its existing intentions

is important. For example, in tackling some new task, it is often desirable that the means

or time chosen for accomplishing that task take account of one's existing intentions towards

the fulfillment of other tasks. In the space-shuttle application, this happens, for example,

when the PRS instance INTERFACEreceives a request for a pressure reading when it is in the

process of evaluating the status of a suspected faulty transducer. In this case, INTERFACE

wiU either defer or suspend attention to that request (possibly advising the requester) until

it has completed its evaluation of the transducer.

3.10 Supporting Goals and Beliefs

Some embedded reasoning systems are designed so that any given course of action is termi-

nated whenever the beliefs or goals that brought about that action cease to be true. In this

section, we shall consider this approach and how it compares to the one adopted in PRS.

Suppose that a certain alarm sounds, which in turn invokes some procedure to rectify the

fault. In some cases, the alarm will only be turned off when the problem is rectified. Thus,

it appears sensible that, should ever the alarm cease to sound, any procedure aimed toward

that end be terminated (but more about this below). On the other hand, there are many

cases where the ceasing of an alarm does not mean that the corresponding fault has been

fixed: the alarm may only sound for a fixed interval of time, or it may be deliberately turned

off to relieve the operator of the annoying noise. Thus, it is clearly bad policy to always

terminate a procedure simply on the grounds that the beliefs that caused its activation no

longer hold. Of course, if the inititiating belief is that the alarm sounded at a particular

time, and this belief is found to be false, it is usually sensible not to proceed any further.

Should the goals that constitute the purpose of some course of action cease to exist, the

rationale for continuing with the action disappears also. However, this need not mean that

one should simply cease doing what one was doing and get on with other activities. Indeed,
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in most cases one would need to "clean up" after the action, and in some cases one may

even desire to see things through to the end (as, for example, when one has fired the jets

to force reentry of the shuttle).

Thus, depending on circumstances, one has to reason carefully about the early termi-

nation of procedures, even when there is due cause for termination. PI_$ offers no special

techniques for handling these problems, but instead provides the hooks by which such rea-

soning can be performed at the appropriate time.

PRS will always recognize goal failures. Without any meta-KAs to respond to such

failures, the system will simply try some other procedure to achieve the failed goal, eventu-

ally terminating once all avenues of attack have been explored. On the other hand, should

one wish some special action to occur on goal failure, it is straightforward to construct

appropriate metalevel KAs to perform the necessary corrective actions.

PRS currently has no notion of supporting beliefs for given courses of action. Thus, if

it is desired that a certain procedure be terminated should some belief be no longer held, a

special KA must be set up to look for that condition during the execution of the procedure.

While this is not difficult to do, it would be useful to provide generic mechanisms to assist

in this task. We plan to address this and related issues in our future work on PRS.

3.11 Guaranteed Reactivity

Definitions of real-time systems revolve around the notion of response time. For example,

Marsh and Greenwood [11] define a real-time system as one that is " predictably fast enongh

for use by the process being serviced" and O'ReiUy and Cromarty [12] require that "there

is a strict time limit by which the system must have produced a response, regardless of the

algorithm employed." This measure is most important in real-time applications; if events

are not handled in a timely fashion, the operation can go out of control. Amazingly, few of

the existing real-time AI systems are guaranteed to respond within a bounded interval of

time [10].

Response time is the time the system takes to recognize and respond to an external

event. Thus, a bound on reaction time (that is, the ability of a system to recognize or

notice changes in its environment) is a prerequisite for providing a bound on response time.

PRS has been designed to operate under a well-defined measure of reactivity. Because the

interpreter continuously attempts to match KAs with any newly acquired beliefs or goals,

the system is able to notice newly applicable KAs after every primitive action it takes.

To estimate the bound on reaction time, let p be an upper bound on the execution

times of the primitive actions that the system is capable of performing. Let's also assume

that n is an upper bound on the number of events that can occur in unit time, and that
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the PRSinterpretertakesat mosttime t to select the set of KAs applicable to each event

occurrence. 4

Thus, the maximum reactivity delay, An, is given by

An=p+yxt

where y is the maximum number of events that can occur during the reaction interval.

We have

y=An×n

and thus we obtain

An = p/(1 - nt)

where we assume that t < 1/n.

This means that, provided the number of events that occur in unit time is less than

1/t, PRS will notice every event that occurs [that is capable of triggering some KA] and is

guaranteed to do so within a time interval An. In the current implementation, the values

of p and t are less than 0.1 seconds, giving a reactivity delay of at most 0.2 second for an

event rate of 5 events per second.

Because metalevel procedures are treated just like any other, they too are subject to

being interrupted after every primitive metaievel action they take. Thus, reactivity is guar-

anteed even when the system is choosing between alternative courses of action or performing

deductions of arbitrary complexity.

Having reacted to some event, it is necessary for the system to respond to this event

by performing some appropriate action. As the system can be performing other tasks at

the time the critical event is observed, a choice has to be made concerning the possible

termination or suspension of those tasks while the critical event is handled. Furthermore, if

there are a number of different ways in which the event can be handled, it is also necessary

to choose among those alternatives.

Such choices can be made by appropriate metalevel KAs. However, in general, these

decision procedures may take an unbounded amount of time to reach a decision. There are

two possible ways to overcome this problem. One is to require that all decision procedures

complete in a bounded time. In many domains, this provides adequate decision-making

capability and yields a bound on response time.

Alternatively, one could construct a special metalevel KA to act as a task scheduler.

This KA would have the capability to preempt all executing decision tasks (and any other

tasks for that matter) within a bounded time and begin execution of an event handler. It

could utilize whatever information was available (such as any incremental decisions made in

4As selection of KAs does not involve any general deduction beyond unification and evaluation of a

boolean expression, an upper bound does indeed exist.
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narrowingdownthe rangeof possibilities)to selectthe mostappropriateeventhandlerand
the mannerin whichto suspendor terminateothertasks. It couldalsotakeinto account
the differentconstraintson responsetime that mayexist in differentsituations.The only
requirementis that this KA havea guaranteedupperboundonexecutiontime.

In summary,PRSis guaranteedto reactto critical eventsin a boundedtime intel'val.
With appropriatemetalevelKAs, it is alsopossibleto guaranteea boundon responsetime.
However,the questionremMnsasto what algorithms(KAs) arewell suitedfor decision-
makingin boundedtime. Surprisingly,it is onlyrecentlythat researchersin AI havebegun
to considerthis problem[2, 4]. We proposeto addressthis issuemorefully in our future
research.

3.12 Variable Usage

The design of the PRS system has attempted to stress the use of logical variables, similar

to the way variables are used in Prolog. Within a KA, such variables can never be rebound.

However, it is sometimes convenient to use variables with other kinds of semantics, in

particular, to use variables that have a semantics similar to what is found in standard

programming languages.

There are three kinds of variables in the PlUS system, all of whose semantics can be

mapped onto a standard logical variable semantics, but whose usage differs. Global variables

are just like logical variables in the classic sense. Local variables are like global variables,

but have a limited extent or lifetime. Program variables function much like normal variables

in standard programming languages.

Global variables axe prefixed by $ and can have only one binding during the lifetime of

a particular KA instance. _ Note that.each instantiation of a KA is associated with its own

global variables. Thus, the global variables in each recursive call of the same KA will be

distinct.

Local variables are prefixed by 7,; they behave like global variables, except that their

binding is meaningful only on a single arc. In other words, on each arc, the appearance of

a 7, variable is similar to the creation of a fresh new global variable. The binding of a 7,

variable will not carry over from one arc to the next. However, if multiple goals are invoked

on the same arc, the same variable and binding will be used for all of them.

Program variables are prefixed by ©; they can be rebound from arc to arc and retain

their value between arcs. Whether or not the value of an © variable is rebound or not will

depend upon context. A goal of form (! (= ©x ©y)) will, by default, bind the value of ©x

sOf course, as in Prolog, many different bindings may be attempted in trying to satisfy some goal

expression that appears in the I(A. However, once a binding has been found that successfully achieves that

goal, that binding is fixed for the lifetime of the KA instance.

35



to beequalto the currentvalueof ©y,if it hasone. If ©ywasnotboundand©xwasbound
whenthis goaloccurred,©ywouldbe boundto the valueof _x. If both wereunbound,
they wouldneverthelessbeconstrainedto beequal,andif oneachieveda bindinglater, the
otherwouldbeboundto that bindingaswell. A goalof form (?(= ©x©y)) simplytests
to seeif the bindingsof the two variablesareequal.

Clearly,both globalandlocal variablesare logical variables in the classic sense - they

cannot be rebound. In order to handle the semantics of _ variables consistently within this

logical-variable framework, the binding of program variables may be viewed as a particular

property of an associated global variable (intutively, the contents of the denoted object).

Whereas global variables can be bound only once, it is acceptable for the value of its contents

(a .function on the variable) to change. For example, one could imagine a global variable as

a box. Each global variable is a specific box and can never be rebound to another box, but

different objects may be placed in the box at different points in time.

Note that variables are assumed to bind to so-called rigid designators - that is, the

variable is assumed to denote the same object throughout the KA in which it appears.

Thus, any functional expressions (which could be bound to such variables) should also

be rigid designators. In such cases, one should not, for example, use a function such as

(the-block-on-top-of $x) as the denotation of this expression could well change during

the execution of a KA. This restriction does not apply, however, to evaluable functions, as

they and their arguments are immediately evaluated by the system.

3.13 Planning or Not?

There has always been some confusion in the literature about the notion of planning, espe-

cially with respect to the kind of practical reasoning that PlUS performs.

In the AI literature, planning is viewed as the generation of a sequence of actions to

achieve some given goal. The classical approach to this problem is to simulate the effects of

performing the actions so as to ensure that their execution does indeed achieve the required

goal. All this planning is done, in most cases, prior to performing any physical action in

the actual world.

It is quite straightforward to run PR.S in this way: the primitive actions performed by the

system are decoupled from the actual world, and the KAs simply become the "operators"

of classical planning systems. Thus, the system simulates execution of the KAs, and its

database reflects beliefs about the state of the world as it would be had those KAs actually

been executed. As the system explores all possible sequences of activity that could possibly

lead to the goal condition being achieved, it will find a plan if one e.'dsts. 6 In this sense,

PRS is capable of planning in the classical tradition, albeit not very efficiently.

6In fact, this depends on how the metatevel KAs are written. In particular, one has to ensure that all

possible interleavings of any conjunctive goals are explored.
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Thekind of planningdiscussedabovetakesplaceprior to performinganyactionsin the
actualworld. However,it is alsopossibleto formplansduringthecourseof performingsome
task. Assumeone has some goal, g, and a variety of ways to achieve that goal. Let's say

that there are two options: achieve gl followed by g2; or achieve fl followed by f2. Now one

could choose arbitrarily between these options, or one could engage in some level of planning

to determine which was the best course of action in the given circumstances. This kind of

planning may involve simulating the possible outcomes of each approach by elaborating

these options as done in classical planning. However, one could alternatively select from a

great variety of other techniques. For example, the choice could be based on the expected

time to complete the actions, or the likelihood of success of the plans as gained through

experience. In any case, simply choosing which course of action to pursue, no matter how

one does it, constitutes forming a plan to achieve the goal g. Having chosen one of these

courses of action (or, indeed, none 7 or both!S), one repeats the process. For example, if the

course involving gl and g2 were chosen, and one had various ways of achieving gl, then it

would be necessary to plan how best to achieve that subgoal, and so on.

This is exactly the way PRS operates. The method of choosing between alternative

courses of action is embedded in the metalevel KAs of the systemand thus, in essence, the

particular approach to forming plans is not hard-wired into the system. To the extent that

the choice is made arbitrarily, one may wish to avoid calling this process "planning." But

where it is based on any information at all, no matter how meager, the determination of an

appropriate course of action is indeed planning.

In the RCS example discussed in Chapter 4, the system decides between different courses

of action depending on how the KA was invoked and what sort of priority it has. This is

clearly quite a weak form of planning, and more complex meta-KAs - taking time availabil-

ity, costs, and benefits into account - would improve system reliability.

Of course, it is important to determine exactly what algorithms (metalevel KAs) are

needed for effective planning. The P_CS problem, as we said above, uses a very simple form

of planning, which, in itself, is probably not of much interest. However, what is of interest

is just how weak the planning component can be when we have a wealth of experience (a

rich set of object-level KAs) to assist us.

3.14 Additional Features of PRS

This report is concerned with the design of real-time reasoning systems, and not primarily

with features of the particular implementation of PRS at SRI International. However, it

ZSuch as when both approaches appear unlikely to achieve the goal.

SSuch as forming the plan to court both Jane and Mary in parallel, in the hope that one of them will

eventually marry you.
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is important to mentionsomeof themajor implementationfeaturesthat facilitatecreating
andmodifyingsystemdatabasesandKA libraries.

3.14.1 The KA Editor

EachPRSsystemmustincludeasetofKAs suppliedbytheuser.Normally,KA descriptions
arestoredwithin a KA library. EachKA descriptionincludesa networkof labelednodes
andarcs,aswellasaninvocationconditionthat describesthesituationsin whichthat KA is
applicableanduseful.The userof thePRSsysteminputsall of this proceduralinformation
usinga KA Editor, which is based on SKI's proprietary Grasper-II system. This user

interface is fairly straightforward and guides the user through the creation or modification

of selected KAs via questions and menus.

To create a new KA, the user is prompted with a series of questions. The user will be

asked to enter the invocation condition for this KA and various other information. After

answering these questions, the user can begin creating the actual KA body (network) using

the appropriate menu items. These allow the user to create and name nodes and arcs, to

specify their shape, and to perform various other graphical operations on the KA. Once

created, KAs can be easily modified using the same menu-driven system.

3.14.2 The Structure Editor

When applied to certain domains, knowledge-based inference systems must make use of large

amounts of information relating to the physical structure of the real world. In these cases,

encoding this information as predicates in a database is a critical and very time-consuming

operation. The way this is normally done is by taking each physical object in the domain

and writing down facts about its attributes (i.e., size, weight), class relationships (A is a

brick), and relations to other objects in the domain (A is connected to B, A is inside C, etc.).

This operation becomes very inefficient as the number of objects in the domain becomes

large. The task of building the database can take a very long time, and any modification

of the structure of an object requires an expensive search through the database to change

all the facts that involve that object.

To overcome this problem, PRS employs a Structure Editor that allows the representa-

tion of PR.S's predicate calculus database about structure in an interactive graphical format.

As with the KA Editor, the Structure Editor is built on top of the Grasper-II system. In

addition to making it easier to create and update the database, the Structure Editor also

incorporates features of object-oriented programming (like classes and inheritance) that fa-

cilitate the creation of large and conceptually complex systems of objects. The Structure

Editor can also be used to alter structure dynamically as the PlUS system runs, and thus

can display visually certain the current status of the application system.
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3.14.3 The Natural Language Interface

SRI International's natural-languagesystem,Candide, has beenusedto facilitate the
buildingof KAs. UsingCandide,anengineeror missioncontrollercanreadily createKAs
througha mixedinteractioninvolvingbothgraphicsandnatural language.Candide trans-

lates English expressions into the logical form used by PR, S, and operates in conjunction

with the KA Editor described above.

Thus, using Candide, the user can specify complex objects, conditions, goals, and beliefs

in English, their temporal and causal relations graphically. Candide also facilitates later

modifications to the network via a natural-language dialog. Candide thus eliminates the

need for those who design and maintain a PRS knowledge base to be proficient in the

specialized logical language used by PRS. In addition, the use of English can greatly simplify

what would otherwise be highly complex formal statements. For example, the entire portion

of the procedural network that is highlighted in Figure 3.4 can be specified with the single

query "Is the pressure in the affected manifold greater than 1307"

Significantly, Candide is not just a single-utterance interpretation system -- it includes

capabilities for processing the types of extended natural-language dialogues that are neces-

sary in complex knowledge acquisition tasks. As one example, Candide tracks the discourse

along each path of the network in order to perform sophisticated reference resolution. An

engineer can specify an invocation constraint that "A jet is faulty." When the engineer later

specifies that there should be a test for high usage in the RCS, Candide will determine that

the intended RCS module is the one containing the faulty jet. Techniques for reasoning

about the domain and the discourse history enable Candide to handle a range of important

natural-language phenomena, including definite and indefinite reference, anaphora, quanti-

tier scoping, resolution of nominal compounds, resolution of syntactic and lexicat ambiguity,

and metonymy.
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Chapter 4

The RCS Application

The sytem chosen for experimentation with PRS is the reaction control system (RCS) of

the space shuttle. The system structure is depicted in the schematic of Figure 4.1. One

of the aims of our research is to automate the malfunction procedures for this subsystem.

Sample malfunction procedures are presented in Figure 4.2 below, and in Chapter 2, Figure

2.1.

The R.CS provides propulsive forces from a collection of jet thrusters to control the

attitude and other motions of the space shuttle. Each jet is permanently fixed to fire in

a particular direction. There axe three R.CS modules, two aft and one forward. Each

module contains a collection of primary and vernier jets, a fuel tank, an oxidizer tank,

and two helium tanks, along with associated feedlines, manifolds, and other supporting

equipment. Propellant flow, both fuel and oxidizer, is normally maintained by pressurizing

the propellant tanks with helium.

The helium supply is fed to its associated propellant tank through two redundant lines,

designated A and B. The pressure in the helium tanks is normally about 3000 psi; this is

reduced to about 245 psi by regulators that are situated between each helium tank and

its corresponding propellant tank. A number of pressure and temperature transducers are

attached at various parts of the system to allow monitoring.

Each RCS module receives all commands (both manual and automatic) via the space

shuttle flight computer software. This software resides on five general purpose computers

(GPCs). Up to four of these computers contain redundant sets of the Primary Avionics

Software System (PASS) and the fifth contains the software for the Backup Flight System

(BFS). All of the GPCs can provide information to the crew by means of CRT displays.

The various valves in an RCS module are controlled using a control panel of switches

and talkbacks (Figure 4.3). Each switch moves associated valves in both the fuel subsystem

and the oxidizer subsystem. Switches can be set to OPEN, CLOSE, or GPC, the last

providing the GPCs with control of the valve position. The talkbacks provide feedback on

valve position, and normally correspond with the switch position, except when the switch
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is in GPC. The talkbacks may not correspond if a valve has jammed or if the control or

feedback circuit is faulty. If the valves in both the fuel and oxidizer subsystems do not move

in unison (because of some fault), the talkback displays a barberpole.

It is important to note that, in the process of changing switch position, there will be a

short time (about 2 seconds) when the positions of the talkback and the switch will differ

from one another. This is because it takes this amount of time for the actual valve to

change its position. Furthermore, during this transition, the talkback will also pass through

the barberpole position. Thus, a mismatched talkback and switch position or a barberpole

reading do not always indicate a system fault.

4.1 System Configuration

As mentioned earlier, two instances of PItS were set up to handle this application. One,

called INTERFACE, handles most of the low level transducer readings, effector control and

feedback, and checking for faulty transducers and effectors. The other, called somewhat

misleadingly RCS, contains most of the high-level malfunction procedures, much as they

appear in the malfunction handling manuals for the shuttle.

To test the system, a simulator for the actual ItCS was constructed. During opera-

tion, the simulator sends transducer readings and feedback from various effectors (primar-

ily valves) to INTERFACE and communicates alarm messages as they appear on the shuttle

system displays to RCS. The simulator, in turn, responds appropriately to changes in valve

switch positions as requested by INTERFACE. The simulator can be set to model a variety of

fault conditions, including misreading transducers, stuck valves, system leaks, and regulator
failures.

The complete system configuration is shown in Figure 4.4. Each of these is described in

the following sections.

4.1.1 The Simulator

The simulator sends messages to INTERFACE and RCS about alarms, transducer readings,

and talkback positions. In turn, it responds to commands from these systems to alter switch

settings and reset alarms.

The simulator uses much the same predicates as used by INTERFACE for defining the

configuration of the ItCS and the various parameter values. A few additional predicates are

used to fully specify the system and the status of the vaxious system components.

Simulator Commands

The simulator can be set to simulate various conditions in the RCS. The following two

commands simulate different modes of operation:
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(0PENJETS) simulatessystem behavior when all5 jetsare firing.

(CLOSEJETS) simulatessystem behaviorwhen none of the jetsare usingfuelor oxidizer.

The followinginteractivecommands describefaults;theseimpinge on allfuturecompu-

tationsuntilremoved.

(STATUS valve value) setsthe statusof valve. IfBAD thisparticularvalvewillno longer

change position;GOOD isnormal.

(BROKEN-SNITCH valve) simulatesa broken switch;the switchassociatedwith valve no

longeraffectsthe positionand talkbackofitsassociatedvalves.

(BROKEN-TALKBACK valve) simulatesa failurein the feedback of valveposition;the talk-

back associatedwith thisvalvewillremain stuckon itscurrentvalue.

(BROKEN-XDCR xdcr value)simulates a broken transducer;the valueof xdcr remains set

to value; ifvalue isnot given then the value staysat itslastvalue;ifvalue isT the

previousfaultremoved.

(LEAK xdcr message) simulatesa leak in the tank,leg,or manifold associatedwith the

transducerxdcr; italsotriggersan alarm with valuemessage.

(HELIUM°BLOCKAGE xdcr message) simulatesa blockageinthe helium pressuresupplysys-

tem; ittriggersan alarm and does nothingelse.

(BROKEN-REGULATOR regulator) simulatesa broken regulator.

Transducer readingsand valveand talkbackpositionscan be set to axbitraxyvaluesby

the followingcommands:

(VALUE xdcr n) setsthe valueof transducerxdcr to n and propagates the value.

(POSITION valve value) setsthe positionof valve to value, even ifthe v_Ive switchis

broken;talkbackgoespermanently toBP (barberpole)ifthepositionoftwo valvescontrolled

by the same switchdiffer.

(POSITION talkback value) setstalkback to value.

Of course,allcommands describedhere are used forsimulatingdifferentstatesof the

RCS, and axe beyond the controlofboth PItS instantiationsand the astronautor mission

controllerinteractingwith the system.

Simulator Input

The only input thatthe simulatorcam receivefrom eitherPRS instantiationisa command

to change the positionof a valveswitch.This isachieved by the followingcommand:

(POSITION s_i_ch value) setsswi_;chto value, togetherwith _llassociatedvalvesand

tz£kbacks.

In thisapplication,only INTERFACE has the capabilityto command the simulatorto

change the positionofa valveswitch.

Each time the switchpositionischanged,the associatedtalkbackgoes through to that

positionina time intervalgivenby the variable*BARBERPOLE-INTERVAL*. This isnormally
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set to about 2-4 seconds. While moving from the old position to the new position, the

talkback is set to the barberpole setting. The positions of the corresponding valves are

changed when the talkback reaches to its final position. If either the valve or talkback is

faulty, the readings are fixed as described above.

Simulator Output

The simulator will send messages to INTERFACE whenever transducer readings or valve

talkback positions change. This is done with the messages (VALUE xdcr integer) and

(PDSITION talkback pos), respectively. The value of pos can be either 0P (open), CL

(closed), or BP (barherpole). Alarms are fired when given upper and lower limits are crossed,

or certain leaks or blockages occur. All alarms are sent to RCS. Note that while the simulator

holds information about actual pressures and valve positions, neither INTERFACE nor RCS

are informed of these facts - they are simply informed of transducer readings and talkback

positions, either of which could be in error.

Pressure Calculations

In this section we briefly describe the method for calculating pressures in the simulator.

Each leak or firing jet is processed individually, incrementally changing all pressures in

regions that are accessible through valves to the given leak or jet. Only after all these are

processed does the simulator check final values for changes that must be reported.

Processing is done up to the root of the pressurization system by following ancestor links

through open valves, then visiting all descendants of the root accessible via open valves, and

updating their values on the way. The rates of fuel and oxidizer loss during jet firing, regula-

tor pressure loss, and leakage are specified by *FIRE-RATE*, *REGULATOR-LEAK-RATE*, and

*LF.AK-RATE*, respectively. If the root is the helium tank, then the helium tank continues

to pressurize the system despite the leak. We consider this case below. If the connection to

a helium tank is newly opened, then all regions connected to it must allow the pressure to

jump immediately to either *REGULATOR-PRESSURE* or the helium tank pressure, whichever

is the less. If the pressure in these regions is already higher than either of these readings,

then it remains unchanged.

We describe now how we approximate the loss of pressure in the system when the helium

tank is pressurizing the leaking component. Leaks cause all regions accessible to them to lose

pressure. When the helium tank is accessible to the leak, it continues to try to pressurize

the system. We approximate this by having pressures decrease at some less-than-nominal

rate, as specified by *HF.LIUM-LEAK-FACTOR*. We assume that the helium tank also loses

pressure at this rate. Jet firings do not cause any loss of pressure when the system is

pressurized by a helium tank.
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Whenthereis a leakonaheliumtank, its pressurefallswithout affectinganythingelse
until it getsdownto thelevelof thefuelor oxidizertank to whichit is connected.At that
point, the lossin pressureleakpropagatesto therestof thesystemthroughall openvalves.

Parameters and their Settings for the R.CS Example

The values of variables used by the simulator are as follows:

*LEAK-RATE* (-0.25): Rate at which pressure drops when a tank or leg leaks (psi/sec)

*FIRE-RATE* (-0.1): Kate at which each jet uses pressure (psi/sec)

*REGULATOR-LEAK-RATE* (1. O): Rate at which pressure increases if regulator fails (psi/sec)

*P-THRESHOLD* (1.0): Minimum value of pressure increments (psi)

*REGULATOR-PRESSURE* (245.0): Pressure maintained by regulator (psi)

*TIME-DILATION* (1. O): Number of simulated seconds per actual second

*BARBERPOLE-INTERVAL* (240.0): Time that talkback stays in barberpole, in sixtieths of

a second

*CYCLE-WAIT-TIME* (300.0): Time to wait at end of each cycle in sixtieths of a second

*HELIUM-LEAK-FACTOR* (1. O) : Relative leak rate of helium tank compared to ot her system

leaks.

4.1.2 The RCS

The top-level PRS instantiation, RCS, contains most of the malfunction handling procedures

as they appear in the operational manuals for the space shuttle, ttCS takes an abstract view

of the domain - it deals in pressures and valve positions, and does not know about trans-

ducers, switches, or talkbacks. For example, whenever RCS needs to know the pressure in a

particular part of the system, it requests this information from INTERFACE, which is expected

to deduce the pressure from its knowledge of transducer readings and transducer status.

Similarly, RCS will simply request that INTERFACE move a valve to a certain position, and is

not concerned how this is achieved. In this way, RCS can represent the malfunction handling

procedures in a clean and easily understood way, without encumbering the procedures with

various cross-checks and other details.

4.1.3 The INTERFACE

The PRS instantiation INTERFACE handles all information concerning transducer readings,

valve switches, and valve talkbacks. It handles requests from RCS for information on the

pressures in various parts of the system and for rates of change of these values. This

can require examination of a variety of transducers, as readings depend on the status of
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individualtransducers,their locationrelative to the region whose pressure is to be measured,

and the connectivity of the system via open valves.

INTERFACE also handles requests from RCS to change the position of the valves in the

RCS. This involves asking the astronaut to change switch positions, and waiting for confir-

mation from the talkback.

While doing these tasks, INTERFACE is continually checking for failures in any of the

transducers or valve assemblies. When it notices such failures, it will notify the astronaut

or mission controller, and appropriately modify its procedures for determining pressures or

closing valves. It will also consider the consequences of any failures, such as are prescribed

in various flight rules for the shuttle.

4.2 Sample Interactions

In this section, we briefly examine a few different scenarios.

4.2.1 Changing Valve Position

Let's consider the situation where INTERFACE gets a request from RCS to close some valve,

say frcs-ox-tk-isol-12-valve. RCS achieves this by sending INTERFACE the message

(requesl: RCS (! (position frcs-ox-tk-isol-12-valve cl))). Responding to this re-

quest, INTERFACE calls a KA that, in turn, asks the astronaut to place the switch corre-

sponding to this valve in the closed position (see Figure 4.5). Once the astronaut has done

this, INTERFACE will advise RCS that the valve has indeed been closed (Figure 4.5).

However, that is not the end of the story. INTERFACE will also notice that, just after

the switch is moved to the closed position, there is a mismatch with the talkback indica-

tor (which will still be showing open, due to the normal delay in the valve reaching its

closed position). Furthermore, a fraction of a second later, the talkback will move into the

barberpole position, another indication that things could be wrong with the valve.

Both these events initiate KAs that seek to confirm that the talkback moves to its correct

position within a reasonable time (Figure 4.6). Each of these KAs or, more accurately, the

intentions formed by these KAs, immediately suspends itself (using the "walt-until" goal)

while awaiting a specified condition to become true. 1

For example, the KA concerned with a possible switch dilemma will suspend itself until

either the positions of both the switch and the talkback agree, or 20 seconds elapses. When

either of these conditions become true, the KA (strictly, the intention) will awaken and

IThe arguments to the wait-until goal are excessively cumbersome -- for some important technical

reasons -- but c_n probably still be understood. Later versions of the system will allow a syntacticMly

more convenient way of expressing the same information.
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proceed with the next step. If the switch and talkback still disagree, it will notify the

astronaut or mission controller of an error. Otherwise, it fails, and simply disappears from

the intention structure.

Notice that the intentions to respond to the request from RCS, to monitor for a switch

dilemma, and to check the barberpole reading are all established as intentions at some stage

during this process. Various metalevel KAs must therefore be called, not only to establish

these intentions, but to decide which of the active ones to work on next.

A typical state of the intention structure is shown in Figure 4.7. It shows a number

of intentions in the system INTERFACE, ordered for execution as indicated by the arrows.

The intention labeled soak is a metalevel KA. The other intentions include two that are

checking potential switch problems and one that is responding to a request from RCS. The

metalevel intention, in this case, is the one currently executing. Although not clear from

the figure, it is trying to choose among a number of KAs that are applicable in the present

situation.

4.2.2 Handling Faulty 'transducers

In this case, we will assume that transducer frcs-ox-tk-out-p-xdcr fails and remains

jammed at a reading of 170 psi. This causes a number of things to happen. First, it causes

a low-pressure alarm to be activated which will be noticed by the PRS instantiation RCS.

RCS will immediately respond to the alarm by initiating execution of the KA cw-rcs-alara.

This KA will, in turn, request a pressure reading from INTERFACE to ensure that the alarm

is valid.

While this is happening, INTERFACE itself has noticed that the two transducers on the

oxidizer tank do not agree with one another (in this case, the other transducer is reading

the nominal value of 245 psi). This invokes the KA xdcr-bad, which attempts to determine

which of the two transducers is faulty (Figure 4.8). It does this by first waiting a few

seconds to ensure that the mismatch is not simply a transient, and then testing to see if one

of the readings is outside normal limits. If so, it assumes this is the faulty transducer (this

is indeed the procedure used by astronauts and mission controllers). Other KAs, capable of

more sophisticated acts, such as checking the values of downstream or upstream transducers

as well, could be added to the KA library if desired.

Notice what could happen here if one is not careful. Having more than one thing to do,

INTEI_ACE could decide to service the request for a pressure reading for the suspect tank.

If it does so, it will simply average the values of the two transducer readings (yielding 207

psi) and advise ttC$ accordingly. Clearly, this is not what we want to happen - any suspect

parameter readings should be attended to before servicing requests that depend on them.

In the examples we have considered, it has been sufficient to handle such problems

with a relatively simple priority scheme. We first ascribe the property of being a so-called
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safety handler to all those KAs that should be executed at the earliest possible time. Then

we design the metalevel KA that chooses between potentially applicable KAs to place all

safety handlers on the intention structure earlier in the ordering than other intentions. In

the example given above, the KA that detects the faulty transducer is a safety-handler, and

thus isexecuted priorto servicingthe requestfrom RCS. INTERFACE disregardsthe faulty

transducerreadingwhen advisingRCS of the pressure,and thus eventuallyRCS comes to

realizethat the alarm was activatedin errorand that the pressureiswithinnormal range.

Even with allthisgoing on, other thingsare happening within the INTERFACE system.

For example, the factthat the transducerisdetermined to be bad, togetherwith the fact

that itis the very transducerthat informs the shuttlecomputers of overpressurization

problems,causesthe invocationof another KA. In thiscase,the KA reflectsa flightrule

thatstatesthatoverpressurizationprotectionislostwhile thistransducerisinoperative.

As before,metalevelKAs are invoked to determine which KAs to adopt as intentions

and how to orderthem on the intentionstructure.The stateof the intentionstructureat

one stageduringthisprocessisshown in Figure 4.9.

4.2.3 Failed Regulator

It's now time to consider the top-level PRS instantiation, RCS. The case we examine occurs

when the regulator on the feed line between the helium tank and its associated propellant
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tank fails. In this example,we will assume that the frcs-fu-he-¢k-h-reg has failed.

We will focus only on RCS (INTERFACE is, of course, working away during this process as

discussed above).

The first thing that happens when the regulator fails is that pressures throughout the

fuel subsystem begin to rise. When they exceed the upper Limit of 300 psi, certain alaxms

axe activated. This activates the KA cu-rcs-alarm, which attempts to confirm that the

system is indeed overpressurized.

(Note that this process is more complicated than it first appears. High transducer

readings can trigger an alarm which in turn activates the KA cw-rcs-high in the PRS

system RCS. The high transducer readings that gave rise to the caution-warning alarm will

xlso trigger KAs in the PRS system INTERFACE. These KAs will proceed to verify that the

corresponding transducers are not faulty; that is, that the reading of the transducers is

indeed accurate. While doing this (or after doing this) INTERFACE will get a request from

RCS to advise the latest pressure readings. If INTERFACE is in the process of checking the

transducers, it will defer answering this request until it has completed its eva_uation of

transducer status. But eventually it will return to answering the request and, in the case

we axe considering, advise that the pressure is indeed above 300 psi.)

On concluding that the system is overpressurized, another KA (cu-rcs-high) is acti-

vated and this, eventually, concludes that the A regulator has failed (see Figure 4.10). Note

that this KA establishes subgoals to close both the A valve and the B valve (there are cases

when both are open). For the A vxlve, this involves a request to INTERFACE as discussed

above. However, for the B valve, the system notices that the B valve is already closed.

Thus, its goal is directly achieved without the necessity to perform any a_tion or request.

The concluding of this fact then activates another KA (1:k-p-high) that opens the valve

to the alternate (B) regulator. Having opened the valve, it is desirable to then place it under

the control of the computer. However, this cannot be done until the pressure in the system

drops below 312 psi, as otherwise the computer will automatically shut the valve again.

Thus, the malfunction handling procedures specify that the astronaut should walt until

this condition is achieved before proceeding to place the valve switch in the GPC position.

RCS achieves this by asking INTERFACE to monitor the pressure and advise it when it

drops below 312 psi. While waiting for an answer, the KA zk-p-high is suspended (see

Figure 4.11).

When the pressure eventually drops below that threshold, the KA (intention) is awak-

ened, and execution continued. Thus, the valve switch is finally placed in the GPC position

and the overpressurization problem resolved. 2

2Note the necessity to explicitly remove the fact regarding the response of RCS to the monitoring request.

This is necessary with the truth maintenance procedures used by the present system, but clearly needs

improvement.
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cw-rcs-high

fNVOCA TION:

(4"FAC T (0 VEFIPIqESSUFflZtD $ TK SP'S YS))

CON T£X 7".

(AND {mFAC T (TYPE P_qOPELLAN 1"- TANK _ TK))
('FACT (PAR r-ot r S,RCS $P'5 YS)))

GOAL ACHIEV£FI?:

r

£F_EC T@:

NIL

PIqOPEFI TIES:

((,qAFETY-HANDLER T))

(? (& (AS8OCIATEO'FIIrGULATOFI SV $REQ)
(PART-OF $P*SY8 SV)

(POSITION $V OP)

(ALTEflNAT[ SV $V1)))

(t (POSITION SV CL))

r

r <i (POSITION $v1 CL_)

,7

I') (STATUS IRE(] FAIL))

Figure4.10:The KA cw-rcs-high
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tk-p-high

INVOCATION:

(AND ("FACT ($TATU$ |REG FAIL_)

(mFAC r (OVE,RPRE53UI_IZEO | TK $P'5 YS)))

CON rEX 1";

(AND ('FAC r (AL TERNA rE SREG $REG f))

['*FACT (A.,qSOCIA TED-R£GULA fOR SV f $,qEG 1))
(eFAC r (SWITCH $v ! $5 9)))

GOAL ACHIEVER?:
T

EtrFEC T3:

(" (OVERPRESSURIZEO $ TK SP-S Y.R))

PROPER TIES:
NIL

(I (POSITION $Vl 0P))

(SENO-MESSAGI[

| INTERFACE

| {REQUEST RCS

(! (MONITOR (PIqESSURE-BELOW STK

312.))))))

(WAIT-UNTIL

(ACHIEVED INTERFACE

(! (MONITOR (I_IESSURE-BELOW STK

312.)}))))

E,I
(->
(-

(ACHIEVED INTERFACE

(.* (MONITOR (PRESSURE-BELOW $TK

312.))))))

1 ,

E,-?
(I {POSITION $R1 GPC))

(!

(I_tlNT-WARNINQ

(FORMAT NIL

"Overprllss_ri_stton of -A rll:101ved °
STY,)))

q

Figure 4.11: The KA tk-p-high
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4.2.4 Isolating a System Leak

Let's assume that there is a leak in the RCS. Usually, the leak will cause a pressure

drop in the system that will set of a caution-warning (cw) alarm. This will cause the

KA cw-rcs-prop-low to respond. This KA will first try to differentiate between a failed

regulator and a leak in the system. If it determines that the system has a leak, it will then

establish the goal to isolate that leak. This, in turn, triggers the KA rcs-leak-isol. This

KA first attempts to secure the system. This involves requesting that the astronauts close

all the valves in the leaking system.

(Again, the PtLS sytem INTERACE will, throughout each process of closing a valve, check

that the valve has indeed closed and that the corresponding talkbacks are registering closed.

Notice also that the KA used to secure the ttCS (rcs-secure) includes goals that apply

actions to sets of objects rather than single ones (see Section 3.4).)

As soon as the system has been secured, the system can identify the leaking section

by checking for decreasing pressure in each section of the ttCS in turn (using the KA

rcs-leak-isol).
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Chapter 5

Conclusions

The system decribed above was implemented on a Symbolics 3600 LISP machine and has

been used to detect and recover from most of the possible malfunctions of the RCS, including

sensor faults, leaking components, and regulator and jet failures. This was accomplished by

using multiple communicating instantiations of PRS and a simulator for providing real-time

input to the system. The experiment provided a severe and positive test of the system's

ability to coordinate various plans of action, modify intentions appropriately, and shift its

focus of attention. In addition, PRS met every criterion outlined by Laffey et al. [10]

for evaluating real-time reasoning systems: high performance, guaranteed response, tempo-

ral reasoning capabilities, support for asynchronous inputs, interrupt handling, continuous

operation, handling of noisy (possibly inaccurate) data, and shift of focus of attention.

The features of PRS that, we believe, contributed most to its success at this task are

(1) its partial planning strategy, (2) its reactivity, (3) its use of procedural knowledge, and

(4) its metalevel (reflective) capabilities. At any time, the plans the system is intending to

execute (i.e., the selected KAs) are both partial and hierarchical -- that is, while certain

general goals have been decided upon, the specific means for achieving these ends have been

left open for future deliberation. By finding and executing relevant procedures only when

needed and only when sufficient information is available for making prudent decisions, the

system stands a better chance of achieving its goals under real-time constraints.

The wealth of procedural knowledge possessed by the system is also critical in allowing

the system to operate effectively in real-time and to perform a variety of very complex

tasks. In particular, the powerful control constructs that can be represented by KAs (such

as conditionals and loops) were essential to realizing the malfunction handling procedures

used for the shuttle, and allowed low-level system functions to be implemented in the same

formalism (i.e.,without resorting to LISP or some other programming language).

PRS also makes it possible to have a large number of diverse KAs available for achieving

a goal. Each may vary in its ability to accomplish a goal, as well as in its applicability in

particular situations. Thus, if there is insufficient information about a given situation
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to allowone KA to be used, another (perhaps less reliable) might be available instead.

Parallelism and reactivity also help in providing robustness. For example, if one PtI.S

instantiation were busy diagnosing some system fault, other instantiations could remain

active, monitoring environmental changes and keeping the spacecraft in a stable and safe

configuration.

The metalevel reasoning capabilities of PRS are particularly important in managing

the application of the various KAs in different situations. Such capabilities can be critical

in deciding how best to meet the real-time constraints of a domain. In particular, the

combination of a rich intention structure - supporting multiple active, suspended, and

conditional intentions - and the metalevel scheduling capabilities appear to be essential

components of complex real-time applications.

Because PRS exhibits behavioral properties similar to those of a rational agent and is

ascribed the psychological attitudes of belief, desire, and intention, the potential for a high

level of communication with astronauts and other users is greatly enhanced. The astronaut

can inquire of the system its current intentions, and determine the reasons for its adapting

those intentions. If desired, the astronaut could suggest different means for accomplishing

the same task; alternatively, he or she may question the truth of the beliefs upon which

the system has based its reasoning and can direct the system to examine the source of

these beliefs in greater detail. Of course, the system does not come close to manifesting the

behavioral complexity of real rational agents; nevertheless, it represents an important step

in building machines that can interact in a rational way with human users.

There are many issues that need further study. In particular, it is important to re-

examine the semantics of KAs to allow for external events to occur during their execution

and for other KAs to interrupt processing. The truth maintenance techniques used for

handling the database need further study and extension, and goals of maintenance must

be considered. It is necessary to examine more complex scheduling schemes and, finally, to

expand the application domain to handle fully and properly the malfunction procedures of

the RCS.
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Appendix A

The RCS Database

Electrical Buses

(type electrical-bus _na-bus)

(type electrical-bus _nb-bus)

(type electrical-bus mnc-bus)

(type electrical-bus fpcl-bus)

(type electrical-bus acl-bus)

(type electrical-bus ac2-bus)

(type electrical-bus ac3-bus)

(type electrical-bus abl-bus)

(type electrical-bus ab2-bus)

(type electrical-bus ab3-bus)

(type electrical-bus bcl-bus)

(type electrical-bus bc2-bus)

(type electrical-bus bc3-bus)

(type. electrical-bus cal-bus)

(type electrical-bus ca2-bus)

(type electrical-bus ca3-bus)

(type electrical-bus flcl-bus)

(type electrical-bus fmcl-bus)

(type electrical-bus fpc2-bus)

(type electrical-bus flc2-bus)

(type electrical-bus fmc2-bus)

(type electrical-bus fpc3-bus)

(type electrical-bus flc3-bus)

(type electrical-bus fmc3-bus)

(negation-as-failure sub-bus)
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(sub-bus

(sub-bus

(sub-bus

(sub-bus

(sub-bus

(sub-bus

(sub-bus

(sub-bus

(sub-bus

(sub-bus

(sub-bus

(sub-bus

mna-bus fpcl-bus)

fpcl-bus flcl-bus)

fpcl-bus fmcl-bus)

fpcl-bus acl-bus)

mnb-bus fpc2-bus)

fpc2-bus flc2-bus)

fp¢2-bus fmc2-bus)

fpc2-bus ac2-bus)

mnc-bus fpc3-bus)

fpc3-bus flc3-bus)

fpc3-bus fmc3-bus)

fpc3-bus ac3-bus)

(functional status 1)

(status mna-bus good)

(status mnb-bus good)

(status mnc-bus good)

(status acl-bus good)

(status ac2-bus good)

(status ac3-bus good)

(status abl-bus good)

(status ab2-bus good)

(status ab3-bus good)

(status bcl-bus good)

(status bc2-bus good)

(status bc3-bus good)

(status ¢al-bus good)

(status ca2-bus good)

(status ca3-bus good)

(status fpcl-bus good)

(status flcl-bus good)

(status fmcl-bus good)

(status fpc2-bus good)

(status flc2-bus good)

(s_a_us fmc2-bus good)

(status fpc3-bus good)

(status flc3-bus good)

(status fmc3-bus good)
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Computer Buses

(type data-path mdm-ffl)

(type data-path mdm-ff2)

{type data-path mdm-ff3)

(type data-path mdm-ff4)

(status mdm-ffl good)

(status mdm-ff2 good)

(status mdm-ff3 good)

(status mdm-ff4 good)

RCS Systems

(type rcs frcs)

(type propellant-system frcs-fu)

(type propellan_-system frcs-ox)

Oxidizer and Fuel Tank Subsystems

(type tank frcs-ox-tk)

(type tank frcs-fu-tk)

(type propellant-tank frcs-ox-tk)

(type propellant-tank frcs-fu-tk)

(status frcs-ox-tk good)

(status frcs-fu-tk good)

(type

(type

(type

(type

valve frcs-ox-tk-isol-12-valve)

valve frcs-ox-tk-isol-345-valve)

valve frcs-fu-_k-isol-12-valve)

valve frcs-fu-tk-isol-345-valve)

(type propellant-tank-valve frcs-ox-tk-isol-12-valve)

(type propellant-tank-valve frcs-ox-tk-isol-345-valve)
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(type propellant-tank-valve frcs-fu-tk-isol-12-valve)

(zype propellanZ-tank-valve frcs-fu-zk-isol-345-valve)

(status frcs-ox-Zk-isol-12-valve good)

(status frcs-ox-tk-isol-345-valve good)

(status frcs-fu-tk-isol-12-valve good)

(staZus frcs-fu-tk-isol-345-valve good)

following values are op, el

(functional position 1)

(negation-as-failure position}

(position frcs-ox-zk-isol-12-valve op)

(position frcs-ox-Zk-isol-345-valve op)

(position frcs-fu-Zk-isol-12-valve op)

(position frcs-fu-Zk-isol-345-valve op)

(type switch frcs-prop-tk-isol-12-switch)

(Zype switch frcs-prop-tk-isol-345-switch)

(switch frcs-ox-Zk-isol-12-valve frcs-prop-zk-isol-12-switch)

(swiZch frcs-ox-tk-isol-345-valve frcs-prop-Zk-isol-345-switch)

(swi_chfrcs-fu-tk-isol-12-valve frcs-prop-Zk-isol-12-switch)

(switch frcs-fu-tk-isol-345-valve frcs-prop-Zk-isol-345-switch)

(talkback frcs-ox-Zk-isol-12-valve frcs-prop-tk-isol-12-talkback)

(talkback frcs-ox-tk-isol-345-valve frcs-prop-tk-isol-345-talkback)

(_alkback frcs-fu-tk-isol-12-valve frcs-prop-tk-isol-12-zalkback)

(talkback frcs-fu-tk-isol-345-valve frcs-prop-tk-isol-345-zalkback)

(associated-talkback frcs-prop-tk-isol-12-switch frcs-prop-tk-isol-12-talkback)

(associa_ed-talkback frcs-prop-tk-isol-345-switch frcs-prop-tk-isol-345-talkback)

following values are man-op, man-cI, gpc-op, gpe-cl note drive-capability fact-invoked on

status
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(negation-as-failure drive-capability)

(drive-capability

(drive-capability

(drive-capability

(drive-capability

(drive-capability

(drive-capability

(drive-capability

(drive-capability

(drive-capability

(drive-capability

Cdrive-capability

(drive-capability

(drive-capability

(drive-capability

(drive-capability

(drive-capability

frcs-ox-tk-isol-12-valve man-op)

frcs-ox-tk-isol-12-valve man-c1)

frcs-ox-tk-isol-12-valve gpc-op)

frcs-ox-tk-isol-12-valve gpc-cl)

frcs-ox-tk-isol-345-valve man-op)

frcs-ox-tk-isol-345-valve man-cl)

frcs-ox-tk-isol-345-valve gpc-op)

frcs-ox-tk-isol-345-valve gpc-cl)

frcs-fu-tk-isol-12-valve man-op)

frcs-fu-tk-isol-12-valve man-cl)

frcs-fu-tk-isol-12-valve Epc-op)

frcs-fu-tk-iso1-12-valve gpc-cl)

frcs-fu-tk-isol-345-valve man-op)

frcs-fu-tk-isol-345-valve man-cl)

frcs-fu-tk-isol-345-valve gpc-op)

frcs-fu-tk-isol-345-valve _rpc-cl)

(type p-xdcr frcs-ox-tk-p-xdcr)

(type p-xdcr frcs-ox-tk-out-p-xdcr)

(type p-xdcr frcs-fu-tk-p-xdcr)

(type p-xdcr frcs-fu-tk-out-p-xdcr)

(status frcs-ox-tk-p-xdcr good)

(status frcs-ox-tk-out-p-xdcr good)

(status frcs-fu-tk-p-xdcr good)

(status frcs-fu-tk-out-p-xdcr good)

(pressure-ll frcs-oI-tk 230)

(pressure-11 frcs-fu-tk 230)

(pressure-u1 frcs-ox-rk 280)

(pressure-ul frcs-fu-tk 290)

(functional value 1)

(value frcs-ox-tk-p-xdcr 245)

(value frcs-ox-tk-out-p-xdcr 245)

(value frcs-fu-tk-p-xdcr 245)

(value frcs-fu-tk-out-p-xdcr 245)
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(functional pressure I)

(pressure frcs-ox-tk 245)

(pressure frcs-fu-tk 245)

Helium Tank Subsystems

(type tank frcs-ox-he-tk)

(type tank frcs-fu-he-tk)

(type he-tank frcs-ox-he-tk)

(type he-tank frcs-fu-he-tk)

(type

(type

(type

(type

valve frcs-ox-he-tk-isol-A-valve)

valve frcs-ox-he-tk-isol-B-valve)

valve frcs-fu-he-tk-isol-A-valve)

valve frcs-fu-he-tk-isol-B-valve)

(type

(type

(type

(type

he-tank-valve frcs-ox-he-tk-isol-A-valve)

he-tank-valve frcs-ox-he-tk-isol-B-valve)

he-tank-valve frcs-fu-he-tk-isol-A-valve)

he-tank-valve frcs-fu-he-tk-isol-B-valve)

(status frcs-ox-he-tk-isol-A-valve good)

(status frcs-ox-he-tk-isol-B-valve good)

(status frcs-fu-he-tk-isol-b-valve good)

(status frcs-fu-he-tk-isol-B-valve good)

following values are op, cl

(position frcs-ox-he-tk-isol-A-valve op)

(position frcs-ox-he-tk-isol-B-valve ¢I)

(position frcs-fu-he-tk-isol-A-valve op)

(position frcs-fu-he-tk-isol-B-valve cl)

(type switch frcs-he-tk-isol-A-switch)

(type switch frcs-he-tk-isol-B-switch)

(switch frcs-ox-he-tk-isol-A-valve frcs-he-tk-isol-A-switch)
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(switch frcs-ox-he-tk-isol-B-valve frcs-he-zk-isol-B-switch)

(switch frcs-fu-he-tk-isol-A-valve frcs-he-tk-isol-A-swi_ch)

(switch frcs-fu-he-tk-iso1-B-valve frcs-he-tk-isol-B-switch)

(talkback frcs-ol-he-tk-isol-A-valve frcs-he-zk-isol-A-talkback)

(Zalkback frcs-ox-he-Zk-iso1-B-valve frcs-he-tk-isol-B-Zalkback)

(Zalkback frcs-fu-he-tk-iso1-A-valve frcs-he-Zk-isol-A-talkback)

(_alkback frcs-fu-he-tk-iso1-B-valve frcs-he-tk-isol-B-zalkback)

(associated-Zalkback frcs-he-tk-isol-A-switch frcs-he-tk-isol-A-talkback)

(associated-Zalkback frcs-he-zk-isol-B-swiZch frcs-hs-tk-iso1-B-zalkback)

following values are man-op, man-cl, 9pc-op, 9pc-cl

(drive-capability

(drive-capabilizy

(drive-capability

(drive-capability

(drivs-capabilizy

(drive-capabilizy

(drive-capabiliZy

(drive-capability

(drive-capabiliZy

(drive-capability

(drive-capabiliZy

(drive-capabiliZy

(drive-capabiliZy

(drive-capabiliZy

(drive-capability

(drive-capability

frcs-ox-he-tk-isol-A-valve

frcs-ox-he-tk-isol-A-valve

frcs-ox-he-zk-isol-A-valve

frcs-ox-he-tk-isol-A-valve

frcs-ox-he-tk-isol-B-valve

frcs-ox-he-tk-isol-B-valve

frcs-ox-he-tk-iso1-B-valve

frcs-ox-he-Zk-isol-B-valve

frcs-fu-he-Zk-isol-A-valve

frcs-fu-he-Zk-isol-A-valve

frcs-fu-he-Zk-isol-A-valve

frcs-fu-he-tk-isol-A-valve

frcs-fu-he-Zk-isol-B-valve

frcs-fu-he-tk-isol-B-valve

frcs-fu-he-Zk-isol-B-valve

frcs-fu-he-tk-isol-B-valve

(type p-xdcr frcs-ox-he-tk-p-l-xdcr)

(type p-xdcr frcs-ox-he-tk-p-2-xdcr)

(type p-xdcr frcs-fu-hs-tk-p-l-xdcr)

(type p-xdcr frcs-fu-he-tk-p-2-xdcr)

(status frcs-ox-he-tk-p-l-xdcr good)

(s_aZus frcs-ox-he-Zk-p-2-xdcr good)

(status frcs-fu-he-_k-p-l-xdcr good)

(s_a_us frcs-fu-he-_k-p-2-Idcr good)

man-op)

man-cl)

gpc-op)

gpc-cl)

man-op)

man-cl)

gpc-op)

gpc-cl)

man-op)

man-cl)

gpc-op)

g1:,c-cl)

man-op)

man-c1)

gpc-op)

gpc-cl)
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(pressure-ll frcs-ox-he-tk 500)

(pressure-ll frcs-fu-he-tk 500)

(pressure-ul frcs-ox-he-tk 50000)

(pressure-u1 frcs-fu-he-tk 50000)

(value frcs-ox-he-tk-p-l-xdcr 30001

(value frcs-ox-he-tk-p-2-xdcr 30001

(value frcs-fu-he-tk-p-l-xdcr 30001

(value frcs-fu-he-tk-p-2-xdcr 30001

(pressure frcs-ox-he-tk 3000)

(pressure frcs-fu-hs-tk 3000)

(type regulator frcs-ox-he-tk-A-reg)

(type regulator frcs-ox-he-tk-B-reg)

(type regulator frcs-fu-he-tk-A-reg)

(type regulator frcs-fu-hs-tk-B-reg)

(status frcs-ox-he-tk-A-reg good)

(status frcs-ox-hs-tk-B-re E good)

(status frcs-fu-he-tk-A-re E good)

(status frcs-fu-he-tk-B-reg good)

Manifolds

(type

(type

(type

(type

Ctype

(type

(type

(type

(type

(type

manifold frcs-ox-manf-1)

manifold frcs-ox-manf-2)

manifold frcs-ox-manf-3)

manifold frcs-ox-manf-4)

manifold frcs-ox-manf-5)

manifold frcs-fu-manf-1)

manifold frcs-fu-manf-2)

manifold frcs-fu-manf-3)

manifold frcs-fu-manf-4)

manifold frcs-fu-manf-5)

(type

(type

(type

valve frcs-ox-manf-l-valve)

valve frcs-ox-manf-2-valve)

valve frcs-ox-manf-3-valve)
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(type valve frcs-ox-manf-4-valve)

(type valve frcs-ox-manf-5-valve)

(type valve frcs-fu-manf-l-valve)

(type valve frcs-fu-manf-2-valve)

(type valve frcs-fu-manf-3-valve)

(type valve frcs-fu-manf-4-valve)

(_ype valve frcs-fu-manf-5-valve)

(type manifold-valve frcs-ox-manf-l-valve)

(type manifold-valve frcs-ox-manf-2-valve)

(type manifold-valve frcs-ox-manf-3-valve)

(type manifold-valve frcs-ox-manf-4-valve)

(type manifold-valve frcs-ox-manf-5-valve)

(type manifold-valve frcs-fu-manf-l-valve)

(type manifold-valve frcs-fu-manf-2-valve)

(type manifold-valve frcs-fu-manf-3-valve)

(type manifold-valve frcs-fu-manf-4-valve)

(type manifold-valve frcs-fu-manf-5-valve)

(status frcs-ox-manf-l-valve good)

(status frcs-ox-manf-2-valve good)

(status frcs-ox-manf-3-valve good)

(status frcs-ox-manf-4-valve good)

(status frcs-ox-manf-5-valve good)

(s_atus frcs-fu-manf-l-valve good)

(status frcs-fu-manf-2-valve good)

(status frcs-fu-manf-3-valve Eood)

(status frcs-fu-manf-4-valve good)

(status frcs-fu-manf-5-valve good)

(position frcs-ox-manf-l-valve op)

(position frcs-ox-manf-2-valve op)

(position frcs-ox-manf-3-valve op)

(position frcs-ox-manf-4-valve op)

(position frcs-ox-manf-5-valve op)

(position frcs-fu-manf-l-valve op)

(position frcs-fu-manf-2-valve op)

(position frcs-fu-manf-3-valve op)

(position frcs-fu-manf-4-valve op)

(position frcs-fu-manf-5-valve op)
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Ctype switchfrcs-manf-l-switch)

(type switch frcs-manf-2-switch)

(type switch frcs-manf-3-switch)

(_ype switch frcs-manf-4-switch)

(type switch frcs-manf-5-s.itch)

(switch frcs-ol-manf-l-valve frcs-manf-l-switch)

(switch frcs-ox-manf-2-valve frcs-manf-2-switch)

(switch frcs-ox-manf-3-valve frcs-manf-3-switch)

(switch frcs-ox-manf-4-valve frcs-manf-4-s.itch)

(switch frcs-ox-manf-5-valve frcs-manf-5-s.itch)

(switch frcs-fu-manf-l-valvefrcs-manf-l-switch)

(switch frcs-fu-manf-2-valve frcs-manf-2-switch)

(switch frcs-fu-manf-3-valve frcs-manf-3-switch)

(switch frcs-fu-manf-4-valve frcs-manf-4-swi_ch)

(switch frcs-fu-manf-5-valve frcs-manf-5-switch)

(associated-_alkback frcs-manf-l-switch frcs-manf-l-talkback)

(associated-talkback frcs-manf-2-switch frcs-manf-2-talkback)

(associated-talkback frcs-manf-S-swi_ch frcs-manf-3-talkback)

(associa_ed-talkback frcs-manf-4-switch frcs-manf-4-talkback)

(associated-talkback frcs-manf-5-s.itch frcs-manf-S-talkback)

(talkback frcs-oI-manf-l-valve frcs-manf-l-talkback)

(talkback frcs-ox-manf-2-valve frcs-manf-2-talkback)

(_alkback frcs-ox-manf-3-valve frcs-manf-3-talkback)

(_alkback frcs-ox-manf-4-valv@ frcs-manf-4-talkback)

(talEback frcs-ox-manf-5-valve frcs-manf-5-talkback)

(talkback frcs-fu-manf-l-valve frcs-manf-1-_alkback)

(talkback frcs-fu-manf-2-valve frcs-manf-2-talkback)

(talkback frcs-fu-manf-3-valve frcs-manf-S-talkback)

(talkback frcs-fu-manf-4-valve frcs-manf-4-talkback)

(talkback frcs-fu-manf-5-valve frcs-manf-5-talkback)

(drive-capability frcs-ox-manf-l-valve man-op)

(drive-capability frcs-ox-manf-2-valve man-op)

(drive-capability frcs-ox-manf-3-valve man-op)

(drive-capability frcs-ox-manf-4-valve man-op)

(drive-capability frcs-ox-manf-5-valve man-op)
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(drive-capability frcs-fu-manf- l-valve man-op)

(drive-capability frcs-fu-manf-2-valve man-op)

(drive-capability frcs-fu-manf-3-valve man-op)

(drive-capability frcs-fu-manf-4-valve man-op)

(drive-capability frcs-fu-manf-5-valve man-op)

(drive-capability frcs-ox-manf-l-valve man-c1)

(drive-capability frcs-ox-manf-2-valve man-c1)

(drive-capability frcs-ox-manf-3-valve man-c1)

(drive-capability frcs-ox-manf-4-valve man-c1)

(drive-capability frcs-ox-manf-5-valve man-c1)

(drive-capability frcs-fu-manf-l-valve man-c1)

(drive-capability frcs-fu-manf-2-valve man-c1)

(drive-capability frcs-fu-manf-3-valve man-c1)

(drive-capability frcs-fu-manf-4-valve man-c1)

(drive-capability frcs-fu-manf-5-valve man-c1)

(drive-capability frcs-ox-manf-l-valve gpc-cl)

(drive-capability frcs-ox-manf-2-valve gpc-cl)

(drive-capability frcs-ox-manf-3-valve gpc-cl)

(drive-capability frcs-ox-manf-4-valve gpc-cl)

(drive-capability frcs-ox-manf-5-valve gpc-cl)

(drive-capability frcs-fu-manf-l-valve gpc-cl)

(drive-capability frcs-fu-manf-2-valve gpc-cl)

(drive-capability frcs-fu-manf-3-valve gpc-cl)

(drive-capability frcs-fu-manf-4-valve gpc-cl)

(drive-capability frcs-fu-manf-5-valve gpc-cl)

(drive-capability frcs-ox-manf-l-valve gpc-op)

(drive-capability frcs-ox-manf-2-valve gpc-op)

(drive-capability frcs-ox-manf-3-valve _c-op)

(drive-capability frcs-ox-manf-4-valve gpc-op)

(drive-capability frcs-ox-manf-5-valve gpc-op)

(drive-capability frcs-fu-manf-l-valve Epc-op)

(drive-capability frcs-fu-manf-2-valve gpc-op)

(drive-capability frcs-fu-manf-3-valve gpc-op)

(drive-capability frcs-fu-manf-4-valve gpc-op)

(drive-capability frcs-fu-manf-5-valve gpc-op)

(pressure frcs-ox-manf-1 245)

(pressure frcs-ox-manf-2 245)

(pressure frcs-ox-manf-3 245)

(pressure frcs-ox-manf-4 248)
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(pressure frcs-fu-manf-1 245)

(pressure frcs-fu-manf-2 245)

(pressure frcs-fu-manf-3 245)

(pressure frcs-fu-manf-4 245)

(type p-xdcr frcs-ox-manf-l-p-xdcr)

(type p-xdcr frcs-ox-manf-2-p-xdcr)

(type p-xdcr frcs-ox-manf-3-p-xdcr)

(type p-xdcr frcs-ox-manf-4-p-xdcr)

(type p-xdcr frcs-fu-manf-l-p-xdcr)

(type p-xdcr frcs-fu-manf-2-p-xdcr)

(type p-xdcr frcs-fu-manf-3-p-xdcr)

(type p-xdcr frcs-fu-manf-4-p-xdcr)

(status

(status

(status

(status

(status

(status

(status

(status

frcs-ox-manf-l-p-xdcr good)

frcs-ox-manf-2-p-xdcr good)

frcs-ox-manf-3-p-xdcr good)

frcs-ox-manf-4-p-xdcr good)

frcs-fu-manf-l-p-xdcr good)

frcs-fu-manf-2-p-xdcr good)

frcs-fu-manf-3-p-xdcr good)

frcs-fu-manf-4-p-xdcr good)

(value frcs-ox-manf-l-p-xdcr 245)

(value frcs-ox-manf-2-p-xdcr 245)

(value frcs-ox-manf-3-p-xdcr 245)

(value frcs-ox-manf-4-p-xdcr 245)

(value frcs-fu-manf-l-p-xdcr 245)

(value frcs-fu-manf-2-p-xdcr 245)

(value frcs-fu-manf-3-p-xdcr 245)

(value frcs-fu-manf-4-p-xdcr 245)

(status

(status

(status

(status

(status

(status

(status

(status

frcs-ox-manf-1 good)

frcs-ox-manf-2 good)

frcs-ox-manf-3 good)

frcs-ox-manf-4 good)

frcs-ox-manf-5 good)

frcs-fu-manf-1 good)

frcs-fu-manf-2 good)

frcs-fu-manf-3 good)
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(status frcs-fu-manf-4 good)

(status frcs-fu-manf-5 good)

(manifold-I

(manifold-2

(manifold-3

(manifold-4

(manifold-5

(manifold-i

(manifold-2

(manifold-3

(manifold-4

(manifold-5

frcs-ox frcs-ox-manf-1)

frcs-ox frcs-ox-manf-2)

frcs-ox frcs-ox-manf-3)

frcs-ox frcs-ox-manf-4)

frcs-ox frcs-ox-manf-5)

frcs-fu frcs-fu-manf-1)

frcs-fu frcs-fu-manf-2)

frcs-fu frcs-fu-manf-3)

frcs-fu frcs-fu-manf-4)

frcs-fu frcs-fu-manf-5)

Legs

(type leg frcs-fu-tk-12-1eg)

(type leg frcs-ox-Zk-12-1eg)

(type leg frcs-fu-Zk-345-1eg)

(type leg frcs-ox-tk-345-1eg)

(type leg frcs-fu-he-tk-A-leg)

(type leg frcs-ox-he-tk-A-leg)

(type leg frcs-fu-he-zk-B-leg)

(type leg frcs-ox-he-zk-B-leg)

(type valve frcs-fu-Zk-quad-check-valve)

(type valve frcs-ox-tk-quad-check-valve)

(type quad-check-valve frcs-fu-zk-quad-check-valve)

(type quad-check-valve frcs-ox-Zk-quad-check-valve)

MisceNaneous

(functional quantity 1)

(quantity frcs-ox-he-Zk 40)

(quantity frcs-fu-he-tk 40)

(quantity frcs-ox-tk 40)

(quantity frcs-fu-tk 40)
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(alarm-initiator frcs-fu-tk-out-p-xdcr)

(alarm-initiator frcs-ox-_k-out-p-xdcr)

System Structure

(part-of frcs frcs-fu)

(par%-of frcs frcs-ox)

(par_-of frcs-ox frcs-ox-he-tk)

(part-of frcs-fu frcs-fu-he-tk)

(paI_-of frcs-ox frcs-ox-tk)

(pard-of frcs-fu frcs-fu-_k)

(pard-of frcs-fu frcs-fu-he-tk-A-reg)

(part-of frcs-ox frcs-ox-he-tk-A-reg)

(part-of frcs-fu frcs-fu-he-tk-B-reg)

(parZ-of frcs-ox frcs-ox-he-_k-B-reg)

(par:-of frcs-ox frcs-ox-manf-1)

(pard-of frcs-ox frcs-ox-manf-2)

(par_-of frcs-ox frcs-ox-manf-3)

(pard-of frcs-ox frcs-ox-manf-4)

(part-of frcs-ox frcs-ox-manf-5)

(par%-of frcs-fu frcs-fu-manf-1)

(pard-of frcs-fu frcs-fu-manf-2)

(parZ-of frcs-fu frcs-fu-manf-3)

(pard-of frcs-fu frcs-fu-manf-4)

(part-of frcs-fu frcs-fu-manf-5)

(part-of frcs-ox frcs-ox-tk-isol-12-valve)

(part-of frcs-ox frcs-ox-tk-isol-345-valve)

(part-of frcs-fu frcs-fu-tk-isol-12-valve)

(par_-of frcs-fu frcs-fu-tk-isol-345-valve)

(part-of frcs-ox frcs-ox-he-tk-isol-A-valve)

(parZ-of frcs-ox frcs-ox-he-tk-isol-B-valve)

(pard-of frcs-fu frcs-fu-he-tk-isol-A-valve)

(par_-of frcs-fu frcs-fu-he-tk-isol-B-valve)
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(part-of frcs-fu

(part-of frcs-ox

(part-of frcs-ox

(part-of frcs-ox

(part-of frcs-ox

(part-of frcs-ox

(part-of frcs-ox

(part-of frcs-fu

(part-of frcs-fu

(part-of frcs-fu

(part-of frcs-fu

(part-of frcs-fu

(part-of frcs-fu

(part-of frcs-ox

(part-of frcs-fu

(part-of frcs-ox

(part-of frcs-fu

(part-of frcs-ox

(part-of frcs-fu

(part-of frcs-ox

(part-of frcs-fu

(part-of frcs-ox

(assoclated-unit

(associated-unit

(associated-unit

(associated-unit

(associated-unit

(associated-unit

(associated-unit

(associated-unit

(associated-unit

(associated-unit

(associated-unit

(associated-unit

(associated-unit

frcs-fu-tk-quad-check-valve)

frcs-ox-tk-quad-check-valve)

frcs-ox-manf-l-valve)

frcs-ox-manf-2-valve)

frcs-ox-manf-3-valve)

frcs-ox-manf-4-valve)

frcs-ox-manf-5-valve)

frcs-fu-manf-l-valve)

frcs-fu-manf-2-valve)

frcs-fu-manf-3-valve)

frcs-fu-manf-4-valve)

frcs-fu-manf-5-valve)

frcs-fu-tk-12-1eg)

frcs-ox-tk-12-1eg)

frcs-fu-tk-345-1eg)

frcs-ox-tk-345-1eg)

frcs-fu-he-tk-A-leg)

frcs-ox-he-zk-A-leg)

frcs-fu-he-tk-B-leg)

frcs-ox-he-tk-B-leg)

frcs-fu-tk-quad-check-valve)

frcs-ox-tk-quad-check-valve)

frcs-ox-tk-p-xdcr frcs-ox-zk)

frcs-fu-tk-p-xdcr frcs-fu-tk)

frcs-ox-tk-out-p-xdcrfrcs-ox-tk)

frcs-fu-tk-out-p-xdcr frcs-fu-tk)

frcs-ox-he-tk-p-2-xdcr frcs-ox-he-tk)

frcs-fu-he-tk-p-2-xdcr frcs-fu-he-tk)

frcs-ox-he-tk-p-l-xdcr frcs-ox-he-tk)

frcs-fu-he-tk-p-l-xdcr frcs-fu-he-tk)

frcs-ox-manf-l-p-xdcr frcs-ox-manf-1)

frcs-ox-manf-2-p-xdcr frcs-ox-manf-2)

frcs-ox-manf-3-p-xdcr frcs-ox-manf-3)

frcs-ox-manf-4-p-xdcr frcs-ox-manf-4)

frcs-fu-manf-l-p-xdcr frcs-fu-manf-l)
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(associated-unit frcs-fu-manf-2-p-xdcr frcs-fu-manf-2)

(associated-unit frcs-fu-manf-3-p-xdcr frcs-fu-manf-3)

(associated-unit frcs-fu-manf-4-p-xdcr frcs-fu-manf-4)

(connects frcs-ox-he-Zk-isol-A-valve frcs-ox-he-zk frcs-ox-he-Zk-le E)

(connects frcs-ox-he-tk-isol-B-valve frcs-ox-he-tk frcs-ox-he-tk-leg)

(connects frcs-fu-he-tk-isol-A-valve frcs-fu-he-tk frcs-fu-he-tk-leg)

(connects frcs-fu-he-tk-isol-B-valve frcs-fu-he-tk frcs-fu-he-tk-leg)

(connects frcs-fu-tk-quad-check-valve frcs-fu-he-tk-leg frcs-fu-tk)

(connects frcs-ox-tk-quad-check-valve frcs-ox-he-tk-leg frcs-ox-tk)

(connects

(connects

(connects

(connects

frcs-ox-tk-isol-12-valve frcs-ox-tk frcs-ox-tk-12-1eg)

frcs-ox-tk-isol-345-valve frcs-ox-tk frcs-oz-tk-345-1eg)

frcs-fu-tk-isol-12-valve frcs-fu-tk frcs-fu-tk-12-1eg)

frcs-fu-tk-isol-345-valve frcs-fu-tk frcs-fu-tk-345-1eg)

(connects

(connects

(connects

(connects

(connects

(connects

(connects

(connects

(connects

(connecte

frcs-ox-manf- 1-valve

frce-ox-manf-2-valve

frcs-ox-manf-3-valve

frcs-ox-manf-4-valve

frcs-ox-manf-S-valve

frcs-fu-manf- 1-valve

frcs-fu-manf-2-valve

frcs-fu-manf-3-valve

frcs-fu-manf-4-valve

frcs-fu-manf-S-valve

frcs-ox-tk-12-1eg frcs-oz-manf-1)

frcs-ox-tk-12-1eg frcs-ox-manf-2)

frcs-ox-tk-34S-leg frcs-ox-manf-3)

frcs-ox-tk-345-1eg frcs-ox-manf-4)

frcs-ox-tk-345-leg frcs-ox-manf-5)

frcs-fu-tk-12-1eg frcs-fu-manf-1)

frcs-fu-tk-12-1eg frcs-fu-manf-2)

frcs-fu-tk-34S-leg frcs-fu-manf-3)

frcs-fu-tk-345-1eg frcs-fu-manf-4)

frcs-fu-tk-34S-leg frcs-fu-manf-5)

(negation-as-failure alternate)

(alternate frcs-fu-he-tk-isol-A-valve frcs-fu-he-tk-isol-B-valve)

(alternate frcs-fu-he-tk-isol-B-valve frcs-fu-he-tk-isol-A-valve)

(alternate frcs-ox-he-tk-isol-A-valve frcs-ox-he-tk-isol-B-valve)

(alternate frcs-ox-he-tk-isol-B-valve frcs-ox-he-tk-isol-A-valve)

(alternate frcs-fu-he-tk-A-reg frcs-fu-he-tk-B-reg)

(alternate frcs-fu-he-tk-B-reg frcs-fu-he-tk-A-reg)

(alternate frcs-ox-he-tk-A-reg frcs-fu-he-tk-B-reg)

(alternate frcs-ox-he-tk-B-reg frcs-fu-he-tk-A-re E)

(alternate frcs-ox-tk-p-xdcr frcs-oz-sk-out-p-zdcr)

(alternate frcs-ox-tk-out-p-xdcr frcs-ox-tk-p-xdcr)
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(alternate frcs-fu-tk-out-p-xdcr frcs-fu-tk-p-xdcr)

(alternate frcs-fu-tk-p-xdcr frcs-fu-tk-out-p-xdcr)

(alternate frcs-ox-he-tk-p-l-xdcr frcs-ox-he-tk-p-2-xdcr)

(alternate frcs-ox-he-tk-p-2-xdcr frcs-ox-he-tk-p-1-1dcr)

(alternate frcs-fu-he-tk-p-2-1dcr frcs-fu-he-tk-p-l-ldcr)

(alternate frcs-fu-he-tk-p-l-ldcr frcs-fu-he-tk-p-2-xdcr)

(associated-regulator frcs-fu-he-tk-isol-A-valve frcs-fu-he-tk-A-reg)

(associated-regulator frcs-fu-he-tk-iso1-B-valve frcs-fu-he-tk-b-reg)

(associated-re_lator frcs-ox-he-tk-isol-A-valve frcs-ox-he-tk-A-reg)

(associated-regulator frcs-ol-he-tk-isol-B-valve frcs-ox-he-tk-b-reg)

(other-propellant-system frcs-fu frcs-ox)

(other-propellant-system frcs-ox frcs-fu)

(functional mode 2)

(" (gpc-display frcs-fu tk-p))

(" (gpc-display frcs-ox tk-p))
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Appendix B

The RCS Procedures

The various KAs used in the RCS KA library are given on the following pages.
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tk-p-high

INVOCATION:

(AND (4"FACT (..,eTA TU6 $REG FAIL))

('_'FA C T (OVERPRESSURIZED $ TK SP-S Y3).),)

CON TEX T:

[AND ('_'FAC T (AL TERNA TE $REG $REG 1))

(°FAC T (ASSOCIA TED-RE GULA TOR $ V 1 $REG 1))
(GFACT (SWITCH $V1 $5 _),))

GOAL ACHIEVER?:

T

EFFECTS:

(~ (0 VERPRESSUR/ZED $ TK SP-S Y3,_.)

PROPER TIES:

NIL

(! (POSITION $V1 OP))

[]
(I

(SEND-MESSAGE
INTERFACE

(REQUEST RC$

(! (MONITOR (PRESSURE-BELOW $TK

312.D))))

(WAIT-UNTIL
(ACHIEVED INTERFACE

(! (MONITOR (PRESSUR£-BELOW STK

312.))))))

I_AO_,EVED,NTER_ACE
(,(MON,TOR(PRESSUR_;g.%W,TK

(! (POSITION $51 GPO))

En
(t

(PRINT-WARNING

(FORMAT NIL

"OverpressuHzation of ~A resolved"
$TK)))
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cw-rcs-high

INVOCA TION:

('a'FAC T [OVERPRES3URIZED $ TK SP-S Y`S)_.

CON TEX T:

(AND ['FACT [TYPE PROPELLANT-TANK S TK))

[*'FACT (PART-OF SRCS SP-3YS}),_

GOAL ACHIEVER?:

T

EFFEC T`S:

NiL

PROPER TiE,S:

[(`SAFETY-HANDLER T,))

{? (& (ASSOCIATED-REGULATOR $V $REG>
(PART-OF $P-SY8 SV)

(POSITION $V OP)

(ALTERNATE $V $V1)))

(I (PO`SITION $V CL))

, (I (POSITION $V1 CL))

,7

i-) (STATUS $REQ FAIL)>



TCS-SCCUI['C

tNVOCA TION:

(AND (°GOAL (! (SECURED $3Y8))) STATUS DAP FREE-DRIFT))
(mFACT (TYPE PROPELLANT-SYSTEM $_YS))

CON TEX T:

" 1GOAL ACHIEVER?: (- $M

T (ALL $M1

(& (TYPE MANIFOLD-VALVE $M1)

(PART'OF $SYS $Mt)))))

EFFECTS:

NfL

(! (POSITION-UPOATE SM CL))

PROPER TIES: i

NIL (! (" ..,ISTLL$T1

(& (TYPE PROPELLANT-TANK-VALVE $T1)

(PART-OF $SYS ST1 )))))

(1 (POSITION-UPDATE ST CL))

I'

(- $H

(ALL $H1
(& (TYPE HE-TANK-VALVE $Ht)

{PART-OF $SYS $H1)))))

(l (POSITION-UPOATE SH CL))

1! PRINT-U:ST (FORMAT NIL "-,e, secured" $8Y8)))



rcs-leak-isol

INVOCATION:

('*'GOAL (I (LEAK-13OLA TED SP-SYS)))

C ON TEX T:

(AND (*FACT (MANtFOLD-t $P-SYS $MANFt))

(mFACT "MANIFOLD-2 $P-SYS $MANF2))

(°FACT 'MANIFOLD'3 SP-SYS $MANFS))

('PFACT 'MANIFOLD-4 SP-SYS $MANF4))
(*FACT "MANIFOLD'5 IP-S YS $MANFS))

(*FACT 'TYPE HE-TANK SHE'TK_)

(mFACT 'PART-OF SP'$YS SHE- TK))

(*FAC T "TYPE PROPELLANT-TANK $PROP- TK) )

(mFACT "PART-OF SP'SY3 $PROP- TK))
(eFACT "CONNECTS SV l $PROP-TK $12- TANK-LEG))

("FACT "CONNECTS $V2 $ t2-TANK-LEG SMANFI))

("FACT

(I (SECURED SP-SYS))

r

(? (PRESSURE-CHANGE SMANF1 SDELTA-PI))

'CONNECTS SVO $PROP-TK $345- TANK-LEG))

(eFAG T 'CONNECTS $V4 $...345- TANK-LEO SMANFS)) Ir

('='FAC T "CONNECTS $V5 SHE-LEG $PROP-TK))) !
r; I"-11

(? (V (DECREASING SDELTA-Pl) _ _ (? (& (NOT-DECREASING SDELTA-P1)

_OAL ACHIEVER?: (C (PRESSURE-OF SMANF1) 190.1.).) I _0F SMANFt) 190.)))

N/LEFFEC T_: _)PROPERTIES: (? (PRESSURE-CHAN ) (? (PRE88URE-CHANGE_ SMANF2 SDELTA-P2))

NIL f
(. (V(DEC.EASING,DE,TA-_) _

(<(PRESSU'_-OF$MANF_>,.0_',"--'--_ / \
_ (? (V (DECREASING SDELTA_'2) \

(? (& (NO'P.._ECREASING SDELTA-P2) (< (PRESSURE-OF Sf_d_lF'2) 190.)))

( > = (PRE_,6_E-OF $MANF2) 190.,)) _ X

Es
t _k leg leak" (t (PRINT-UST ._F(;RMAT NIL (I (PRINT-UST (F_RMAT NIL

IsP-sYs>)) .......... "Leaki._._Irold-A" I;L¶_i_...,oJd-*" \
I. i'MANF'" i....... 1

E
(=) (STATUS $121TANK-LEG LEAK);, : I ]

.j.. ,.> M,o,, <.><,,,,u,:L_,,,,,<,, i

(? (& (NOT-DECREASING SDELTA-W2)

T _ ()- (PRESSURE-OF SMANF2) 190_

(?

(PRESSURE-CHAN LTA-P3))_ (? (& (NOT-DECREASING SDELTA-P"J)

(? (V (DECflEA81NG SDEL]_-WJ) ()- (PRESSURE-OF SMANI_) 190.)))

(( (PRESSURE-OF Sr_NF0) 190.}))

-7
(? (PRESSURE-CHANGq SMANF4 SDELTA-P4))

[_ (? (I SMANF4 SDELTA-P4))

/

(? (& (NOT-DECREASING SDELTA-P4)

/ _ (>- (PRESSURE-OF SMANF4) 190.)))
NOT-DECREAS NG SDELTA-P4)

(? (V (DECREASING_IOELTA-P.4) _ (? (V (DECREASING SDEr.J,R"A-P4] L(PP $MANF4) 190 )))
(< (PRESSUR_F,...) 1.o,.-__ <<<PRE.:;_,M.--,,,0>. \

"_ "Leik in manifold ~l"
MANF3)))(I (PRIN -UST (FORMAT NIL '_1_ (I (PRtlyT-UST (FORMAT NIL

"-A 3/4/5 tank leg leak" "_ "_ "Le.l.k |n manifold ~A"

$P-SVS))) J _ SMANF4)))

I _ / (? ,HE-TK SDELTA-PS))

(? SDELTA-PS))

(? (DECREASING $DELTA-PS))



overridc-manf-cl

INVOCA TION:

(AND ('_FAC T (OVERRIDE SMANF CL-OVRD))

(*FACT (3 TA TU5 SMANF GOOD))

(*FACT (TYPE MANIFOLD $MANF))
(*FACT (~ (UNDERPRESSURIZED SP-SYS)))

("FACT (PART-OF SP-SYS SMANF))

CON(r'_._'_,_,T_____ (CONNECTS SMANF-V $LEG SMANF")))

NIL

GOAL ACHIEVER?:

T

EFFECTS:

(- (OVERRIDE SMANF CL-OVRD))

(_ (POSITION MANF-V OP))

r

PROPER TIES:

NIL



request-and-answer-pressure

INVOCA TION:

(eGOAL (! (REQUES TED $AS,U,'ER
SRECIPfEN T

[? (PRESSURE SU SP)))))

CON TEX 7":
NIL

GOAL ACHIEVER?: (! '[SEND-MESSAGE SRE

T <REQUES'i'
(?

EFFEC TS:
NIL

I

(!
(WAIT-UNTIL (TRANSFORM

(? (

NIL)))

PROPER TIER:

NIL (=> (~ (ACHIEVED

(? (P

I

_-IPIENT

SASKER
(PRESSURE SU ANY)))))

-AC '(ACHIEVED SREClRENT

RESSURE SU

$1:')))

f

RECIRENT

_E$SURE $U $P)))))

r



prc-_surc-rcqucst

INVOCA TION:

(°GOAL (? (UPOA TED-PRESSURE SU $P)))

CON TEJ( 7";

NIL

GOAL ACHIEVER?:

T

EFFEC I"8:

(PRESSURE SU SP)

!STED RC$ INTERFACE (? (PRESSURE SU $P))))

PROPER T[ES:

NIL



pvt-lost

INVOCA TIOIV:

(AND (*FACT (TYPE P-XOCR SXDCR)_)
('*FACT (STA TU$ SXDCR BAO)))

CON TEK T:

NIL

GOAL ACHIEVER?:

T

(I (PRINT-UST (FORN
"1_

(TI

EFEEC TS:

(STA TU., _ (Pvr (TK-OF SXOCR)) BAO_,

PROPER TIES:
NIL

kT NIL
T is lost on tank. -A"

;-OF $XDCR))))

f



switch-update

INVOCATION:

('PGOAL (! (POBITION-UPOATE $L SA_)

CONTEXT: (? (NULL $L))/ "_'? () (LENGTH $1.) 0.))

EFEEC T,.S:

N,L E_

1
PROPER TIE3:



quantity 1

/NVOCA TION:

(AND (*'GOAL (? ('QUANTITY STK $X)))

(_'FAC T (S TA TU5 (PV T $ TK) GOOD)))

CON TEN T:

NIL

GOAL ACHIEVER?:
r

(? (GPC -I_

1

E

EFFECTS:

(QUANTITY $TK $X)

PROPER TIES:

NIL

,(t
(PPIINT-LIST (FORMA

"CtUal

$TK
$X)))

r $TK $X))

,7

NIL

tlty In tank -A Is -A"

r



request-and-answer-pressure-change

INVOCA T/ON:

("GOAL (I (REQUESTED $ASKER
$RECIPIEN T

(? (PRESSURE-CHANGE $U

SP_)D.)

CON TEX T:

NIL

GOAL ACHIEVER?: (SEND-MESSAGE

T $RECIF_ENT

(REQUEST $ASKER (? (I_E

E
(!

EFFEC TS: (WAIT-UNTIL

NIL (TRANSFORM-AC 'CA

(? (PFIE_

NIL))) 1

E
PROPER TIES:
NIL (') (~ (ACHIEVED $REC

(? (PRES, ¢
!

3SURE-CHANGE $U ANY)))})

r

":HIEVED SREC;P1ENT
SURE'CHANGE $U $P)))

=lENT

.=RE-CHANGE $U SP)))))



cw-rcs-prop-low

/NVOCA T/ON:

(AND ('t'FAC T (CW-LIGHT FWD'RCS))

(°FACT (ALARM))
(_FAC T (GPC-DISPLA Y $P-S YS LEAK)))

CONTEXT:

(AND (qFAGT 6" (GPC-DISPLA Y SP-SYS TK'P)))

("FACT (PART-OF $RCS $P'SYS))
(°FA C T (TYPE PROPELLANT" TANK $ TK))

("FACT (PART-OF $P-SY_, $TK))

(°FA C T ( T YPE HE- TANK SHE- TIC'))

("FACT (PART-OF $P-SYS SHE-TK)))

GOAL ACHfEVER?:
T

EFFECTS:

NiL

PROPER TIES:

((SAFETY-HANDLER T))

(I
(PRINT-WARNING

(FORMAT

NIL

"Perform lOSS of vemie_ I

$RCS)D

(PRINT-UST

/ (FORMAT

NIL"Possible leak or regulator failed closed in -a in -a"
$TK

T $RCS>))

(? (& (ASSOCIATED-REGULATOR SV SREG)L'T -J

(PART-OF SP-SYS $V)

(POSITION SV OP)))

(? (PRESSURE-CHAN_$HE-TK $DELTA-P))

(? (- (_P))

(I (POSITION $V CI.))_[_ (I (LEAK-1:5OLATED SP'SY__

(I (POSITION (ALTERNATE-OF $V) OP))

[]

(? (PRE88URE-CHANG( SHE-TK SDELTA-_

(? (- (INCREASING _ _ _NG SDELTA-PI))

(PRINT-WARNING

(FORMAT NIL

"-a helium sy i :era blockage"
$P-SY8)))

(I 1- $M

(ALL $M1

(& (TYPE MANIFOLD $M1)

(PARTTOF SP-SY8 $Mt)

(ST_$Mt GOOD)))))

(I (OVERRIDE-UPDaTE SM CL-OVRO))

/
lr

_cedt._re (ORB OPS) for ~A"

(I
(PRINT-LIST

(FORMAT NIL

"helium regul tot "o failed closed"
(REGULATOF "OF $V))))

1



b_pc-pvt

INVOCA TION:('GOAL (? (GPC-PVT STK $X)))

C ON TEX T:

NIL (I
(PRINT-LIST

(FORMAT

GOAL ACHIEVER?: NIL
T "What is the pvt quanti

$TK)))

EFFECTS:

NIL
(l (RE/

PROPER TIES:

NIL

calculation for tank -A"

SX))



dap-as-required

INVOCA TIOIV:

(_GOAL _t! (S TA TUS DAP AS-REQUIRED))_

CON rEX T:

NIL

GOAL ACHIEVER?:

T

(! (PRINT-WARNING

EFFEC TS:

(STA TUS OAP AS-REQUIRED)

FORMAT NIL

"DAP:. aS required')))

PROPER TIES:

NIL



quantity2

INVOCA TION:

(AND (°GOAL (? (QUANTITY $TK $X)))
(_'FACT (TYPE PROPELLANT-TANK $TP,'))

(BFACT (STA TU3 (PVT $TK) 8AD)_,

(°FACT (PART-OF SP-SYS STK))

(*FA C T (0 THER-PROPELLA N T-3 YS TEM $P-..,¢ YS
SP-S Ys f)_

(=FACT (TYPE PROPELLANT- TANK $ TK _))

CON¢,t*_,_'_T (PAR T-OF SP-S YS I $ TK 1)7

NIL (*FACT (STATU..S (PVT $TKI) GOOD))_,

GOAL ACHIEVER?:

T

EFFEC TS:

(QUANT, tTY S TK $)¢,_

PROPER TIES:

NfL

(? (OPC-PVT STKI $,_,)

Nil

tlty in tank -A Is -A*

(I

(RIIINT-LtST (FORMA

"Qua.
STK

SX)):



dap-free-drift

INVOCA TION:

('*GOAL (! (3TA TUS OAP FREE-DRIFT)))

CON TEX T:

NIL

GOAL ACHIEVER?:

T

EFFECTS:

(3 TA TU8 DAP FREE-DRIFT)

(_ _PRfNT-WARNING ,

ROT: PULSE/PULE;E/I:_JL

PROPER TIE,._:

NIL

)RMAT NIL "DAP. MAN

SE';,))

r



alarm-off-underp

INVOCA T/ON:
(AND (*FACT (- (ALARM))_)

(*FACT (UNOERPRE$SUR/ZED $ TK $P-$ YS),)_

CON TEK 7":

NIL

GOAL ACHIEVER?:

T

EFFECTS:

NIL

PROPER TIE3:

NIL

1

(_

(PRINT-WARNING

(FORMAT
NIL

"Underpressurization of RCS ~A resolved"
SP-SY$)))

(=) (~ (UNOERPRESSURIZED STK SP-SYSD)



open-or-close

INVOCA T/ON:

('J'GOAL (! (PO_fTION SV $P03)))

CON TEX T:

NiL

GOAL ACHIEVER?:

T

EFFECTS:

(POSITION SV SPOt)

PROPER TtE_:

NIL

(! (SEND-MESSAGE

(REQU

(1

(WAIT-UNTIL

(TRANSFORM-AC "(,
(_ (POSl

JTERFACE

ST RCS

(I (POSITION $V
$PO8)))))

CHIEVED INTERFACE

"ION $V SPOS))) NIL)))



override-update

INVOCATION: /_
(BGOAL (! (OVERRIOE'UPOA TE SL SA)))

CONTEXT: (? (NULL $L))/,/ ""_? 0 (LENGTH SL) 0,))

GOAL ACHIEVER?:

T

(I (OV(RRIDE (CAR St.) SAD

EYFEC TS:

E.'.-1

PROPER TIES:

NIL



override

INVOCA TION:

(WGOAL (! (OVERRIDE $X $Y)))

CON TEK T:

NIL

GOAL ACHIEVER?:
T

EFFEC T$:

(OVERRIDE IX SY)

PROPER TIES:

NIL

(FORMAT I
(E (QUERY "Set o

SX

$Y)))

,errlde scatus -A -A"



quantitF3

tNVOCA TION:

(AND ('_'GOAL (? (QUANTITY STK $X)))

(';'FACT (TYPE PROPELLANT-TANK S TK))

(°FA C T (,_ TA TUS (PV T $ TK) 8A D))

(eFACT (PART-OF $P-SYS STK))

(°FACT (0 THER-PROPELLAN T-S Y,_ TEM $P-$ YS
SP-,_YS 1))

(eFACT (TYPE PROPELLANT- TANK $ TK 1_)

CON¢_Jm,<'t"_: T (PAR T-OF SP -S Y,5 t $ TK 1 .))

NIL ('FACT (STATUS (PVT STKI) BAD.)))

GOAL ACHIEVER?:

T

EFFEC T_,:

NIL

PROPER TIES:

NIL

(I:_INT- LiST

(FORMAT
NIL

"What i_ the quantity ol
(HE-TK-OF STK))))

l

(I
(I_INT-UST

(FORMAT

NIL

"use -a pre:ssure for qusntity estimation"
(HE-TK-OF $TK))))

propellant based on helium pressure in tank ~A"

(! (READ $X))

r



pressure-change

INVOCA T/ON:

(_'GOAL (? (PRE53URE-CHAIVGE $UNIT SDEL TA_)_

CON TEX T:

NiL (_ (REQUESTED RCS /

iNTERFACE /

GOAL ACHIEVER?: (?_CHANQE SUNIT SDE/TA))))

EFFECTS:

NIL

PMOPER TIES:

NIL



out-of-range

INVOCA TION:

(AND (*GOAL (7 COUT-OF-RANGE SV SUNIT)))

(*FACT (PRESSURE-UL SUNIT SUL) _,

(*'FACT (PRESSURE-LL $UNIT $LL_,).)

CON TE;( T:
NIL

GOAL ACHIEVER?:
T

EFFECTS:
NIL

PROPER TIES:
NIL

qr

(_

(PRINT-UST

(FORMAT
NIL

"The pressure -A is
SV
SUNIT)))

(? (V C' SV SUL) (( SV SLL)))

of range for unit -A"



alarm-off-ovcrp

INVOCA T/ON:
(AND ("FACT (~ (ALARM)))

(eFAC T (OVERPRE,53URIZED $ TK $P-S YS)))

CON TEX T:

NIL

GOAL ACHIEVER?:

T

EFFEC TS:

NIL

PROPER TIES:

NIL

(1

(PRINT-WARNING

(FORMAT
NIL

"Overpressurization of tank ~A in RCS ~A resolved"
STK

SP-SYS)))

(=> (- (OVERPRE88URIZED $TK SP-'SYS)))



cw-rcs-a]arm

INVOCA TtON:

(AND (_FAC T (CW-UGHT FWO-RCS,)')

(CFACT (ALARM_,)
(*FACT (GPC-OISPl..AY SP-SYS TK-P).),)

CON TEX T:

(ANO (*PACT (TYPE PROPELLANT-TANK STK,))

(BFACT (PART-OF $P-SY8 STK),)

(wFAC T (PRESSURE-UL S TK SPUL),)

('_FA C T (PRESSURE-LL $ TK SPLL_)

GOAL ACHfEVER?:

r

EFFECTS:

NIL

PROPER TfES:

((SAFETY-HANDLER T))

{? (URDATED-Pf _SSURE STK $P))

P SPLI._)

(? (,- Sp SPUy

/ <? (& (< SP $1UL) <> Sp $R.L))) _ (_

(I t 4
(PRINT-_ARNING _,NT-WARNING _[_ 4---_

(FORMAT <IK_RMAT

_YS))) $TK)))_,_ <=) (LINOERI:_IESSUI ZED STK $P-SYS))

{_ {CW-UGH't FWO-RCS)))}



selector

INVOCA TION:

(eFACT (SOAK $X))

CON TEX T:

(AND (mFACT (NO...qAFETV BEFORE_)

("FACT (,'* (LENGTH SX.) _.)_)

(_ (= $F (FACT- -KAS-OF $X)))

GOAL ACHIEVER?:

EFFECTS: _
NIL _

NIL _ _j



selector2

INVOCA TION:

(eFACT _SOAK SX))

CON TEX T:

(BFACT (_' (LENGTH SX) f,))

(B (- SF (FACT- -KAS-OF IX)))

GOAL ACHIEVER?:

T

_,_c,s: ./-_ , <.,s<s._o,_.-o,,,,,,



Appendix C

The INTERFACE Database

The Interface database is much the same as the R,CS database, except that it has knowledge

of transducer readings and switch and talkback positions. The interface has no knowledge

of pressures - it has to deduce these afresh from the latest transducer readings. The major

differences are given below:

following values are op, cl, gpc

(position

(position

(position

(position

(position

(position

(position

(posiZion

(position

frcs-prop-tk-isol-12-swizch op)

frcs-prop-tk-isol-345-swi_ch op)

frcs-he-tk-isol-A-swi_ch gpc)

frcs-he-tk-isol-B-switch gpc)

frcs-manf-l-switch op)

frcs-manf-2-switch op)

frcs-manf-3-swiZch op)

frcs-manf-4-switch op)

frcs-manf-5-swiZch op)

following values are op, cl, bp

(position

(posiZion

(position

(position

(position

(position

(position

(posiZion

(position

frcs-prop-tk-isol-12-Zalkback op)

frcs-prop-tk-isol-345-Zalkback op)

frcs-he-tk-isol-A-talkback op)

frcs-he-tk-isol-B-talkback cl)

frcs-manf-l-talkback op)

frcs-manf-2-zalkback op)

frcs-manf-3-talkback op)

frcs-manf-4-talkback op)

frcs-manf-5-talkback op)

83



(mode rcs (status \$unit bad) always)

(" (alarm))

-- 84



Appendix D

The INTERFACE Procedures

The various KAs used in the INTERFACE KA library are given on the following pages.

85



talkback-bp

INVOCA T/ON:

(eFACT (POSITION ST BP)_/

CON TEX T:

(mFAC T (AS3OCIA TED- TALKBACK $¢_ $ T.))

GOAL ACHfEVER?:
T

EFFECTS:
NIL

PROPER TIES:

NIL

(t

(WAIT-UNTIL

(TRANSFORM-AC '(V (ELAPSED-TIME NOW 10,)

(& (POSITION ST $PO$)

(POSITION $5 $PO$)))

'((NOW (MY-TIME))))>)

r

(? (POSITION ST BP))

(! (PRINT-WARNING (FORMAT NIL on ~a"

;% ooo,r,



xdcr-bad

INVOCATION:(_FACT [VALUE SXDCR $V`))

CON TEX T: TUS$_0._X _j_ GOOD) {ST

(AND ['_'FAC T (TYPE P-XDCR SXDCR`)`) (? {& {STA ATUS $XDCRA GOOD)))

(_'FACT (ALTERNATE $XDCR $KDCRA),)

(BFACT (DISAGREE $V (VALUE-OF SXDCRA`)))

(BFACT (_TA TU3 SKDCR GOOD,))
('_FACT (._TA TU3 SXDCRA GOOD`)`)

('FACT (AS3OCIA TED-UNIT $XDCR STK`)))

T w2.)

EFFEC T3:

NIL

(? {DISAGREE (

PROPER TIER:

([_AFETY-HANDLER T)`)

(? (OUT-OF-RANGE {VALUE {_ (OUT OF RANGE {VALUE-OF SXDCRA) STK))

(-> (STATUS pXDCR BAD)) (=) (STATUS_D_ CRA BAD) )

(!
(PRINT-WARNINQ

{FORMAT NIL
"St&l:us of t:

SXDCR)))

1

(I

{PRINT-WARNING
{FORMAT NIL

ansducer -A is bad = "Status of I

SXDCRA)))

r

ansducer "A is bad"



switch-dilemma-1

INVOCATION:

(A NO ( °FA C T (P0611"ION $ T OP).)
('_'FACT [PO61TION $S CL))_.

CON TEX T:

(*FACT (A,..RSOC/A TED-TALKBACK $3 ST))

GOAL ACHIEVER?:

T

EFFEC T..R:

NIL

PROPER TIES:

NIL

<WAIT-UNTIL ( RM-AC '(V
(ELAPSED-TIME NOW

20.)

(& (POSITION ST CL)

(POSITION $5
CL)))

"((NOW (MY-TIME))))))

(POs,To.,soL)))

(_PRINT-WARNING I

(FORMAT NIL I
"switch -A CI4 talkback -A OP"

$T)))



open-or-close-valve

IIVVOCA T/ON: _'_

(eFACT (REQUE.ST SACKER (! (POSITION $V SPOS)).).)

f/(! (POSITION $8 SPOS))
CON TEX T: 1"

(..4NO CmFACT (._JWITCH St/ $S))

('FACT (TALKBACK SV $ T).).) 1_

GOAL ACHIEVER?" (_

T ' (WA[T-UN_IL (TRANSFORM-AC '(V (POSITION ST

I sPOs)
] (ELAPSED-TIME NOW

t 2o,))

r '_<Now IMV-T_ME_))))I

EFFECTS: __
(POSITION $V $PO.F.)

<? (POSITION ST SPOS_ v" _ (? (~ (POSITION ST SPOS)))

NIL

(I (SEND-MESSAO
SA6KER

(ACHIE_/ED INTERFACE I_.'_,_'n I_JT¢A............. FACE



open-or-close-switch

INVOCA TION:

(BFAC T (REQUES T $AS,K'ER (! [POSITION $3 SPOS))))

CON TEK 1":

['FACT (TYPE SWITCH $S,))

GOAL ACHIEVER?:

T

EFFECTS:

[POSITION $S SPOS)

PROPER TIES:
NIL

(t (SENO-MESSAGE_$KER

1 $PO5)1}))



_FCSSUTC

INVOCATION:

(AND ("GOAL (? (P_tESSU,RE STK $P)))
('FACT (ASSOCIA TED-UNIT SXDC.R $ TK)_

(°FACT (TYP_ P-XDCR SXDCR))

(°FA C T [,4L T£RNA T£ SXDC.R $XCCRA)_)

CON TEX T:

NIL

/// <'_TAI"__usixoc_aooo><STATUSI_OCRABAOI>)EFFECT,.%

NIL / _ GO00) <I,TATUS SXOCRA GOOD)))

/

PnOOER TIE3" _

((_AFETY-HANOLEn T).) I _(? (VA

I 0 (. SP

LUE SxocR Sin)



pl-¢ssulr ¢-upstl"(_ 3M!

fNVOCA TION:

(AND (°GOAL [? ['PRESSURE STK SP)))

(eFAC? (CONNECTS SV SU ST_.)

('FAC T (POSITION $V OP),_,

CON TEX 7":

NIL

GOAL ACHIEVER?:

T

EFP'EC T,S:
NIL

PFIOPER TIES:

NIl.

(? (PqRIrSSt _( $U $P))



xdcr-status-requcst

INVOCATION:

(AND ('_'FACT" (REQUE57" SA3KER
(? (37,A TU3 $XOCR SVAR))_)

('FACT (7-YPE P-XOCR SXDCR)))

CON TEX T:

NIL

GOAL ACHIEVER?: (! (CHECKE_ _]._._SD-_TATU

SXOCR>)

7" f

EFFECTS: (? (STATUS SXO

NIL

PROPER TIES:
NIL

I

E,
<!

(SEND-MESSAGE

SASKER
(ACHIEVED INTERFAC

(? I_TATUS _

:R $CONOITION))

XOCR $CONOITION)))))



chcck-xdcr

\

EFFEC T_: NGE {

.,_ (.><:.AT..,.o_.°°V

,_.,.T-.AR.,.o
(FORMAT NIL

0

(PFIINT-WARNINQ
(FORMAT NIL

":SUttUS Of t
SXDCR)))

"Status of

$XOCRA)))

1

ansducl_r" -A is ba, d"

8nsducer -A iS I)8d"



request-monitor

fNVOCA TION:

(BFACT (REQUEST SAtSKER (t (MONITOR $C_*_,)

CONTEX T:

IVIL

GOAL ACHIEVER?:

r

EFFECTS:
NIL

PROPER TIE$:

NIL

(I (MON!

(I (SEND-MEASAGE !

(ACHIE

OR $CD

m,SKER
'ED INTERFACE

(I (MONITOR $C))))>



advise

INVOCATION:

('_'¥ACT (REQUEST $ASKER
(! (AOVh._E SX SPERIO0)._)

CON TEX T:

NiL

GOAL ACHIEVER?:

T

EFFEC TS:

(MOOE SAS,K'ER $X $PER{OO)

PROPER TIES:

Nil-



status-always

IHVOCA TION:

(AND (<'FACT (MODE SASKE,R

(_,TA TUS SUNtT SX)

ALWA YS)_

(eFACT (_TA TU,,_ :/UNIT SX)),)

CON TEX 7";

NIL

GOAL ACHIEVER?:

T

EFFE C TS :

NIL

'C! (SEND-MESSAGE $ASI_ ER (STATUS IUNIT $X)))

r

PROPER TIES:
NIL



lost-auto-close

INVOCA TION:

(AND ("FACT (3TA TUB $KOCR SAD))
('eFACT (TYPE P'KDCR $KDCR))

("FACT (ALARM-IIVITIA TOR SXDCR))

(_FACT (A$3OCIA TED-UNIT SXDCR $ TK_))

CON TEX T:

NIL

GOAL ACHIEVER?:

T

(_II:>RfNT -WARNING

(FORMAT

NiL

_ ;OTVK_)rp)ressurflzation protection lost on tank -A"

EFFECTS:

(5 TA TUS (0 VERPRESSURIZA TION-PRO TEC TION-OF $ TA )

LOS T)

PROPER TIES:

NIL



prcssurc-immcdia rely

INVOCA TION:

(WFACT (MODE $ASK£R

(PRESSLIRE $UNIT ANY)
IMMEDIA TEL Y))

C ON TEX T:
NIL

GOAL ACHIEVER?:
T

£FFEC TS:

NIL

PflOPER TIES:

NIL

(I(5ENO-MESSAGE SASK

(-> (- (MODE $.d

]MMEI

(PRESSURE SUNIT $P)))

SI¢,ER
SURE SUNIT $X)

)lATELY)))

r



pressure-no-air

INVOCA T/ON:

(AND (°GOAL (? (PRESSURE $TK SP)))

(QFACT [ASSOC[A TED'UNIT $XOCR STA_))
(eFACT (TYPE P'XDCR SXOCR))

(eFACT {.RTA TU$ $XDCR GO00))

(_FACT (- (ALTERNATE $;(OCR $,_DCRA_)))

CON rEX T:

NIL

GOAL ACHIEVER?:

T

EFFECrs:
NIL

PROPER TIES:

((sAFETY-HANDLER r))

(? (STATUS <DCR GOOD))

(? (VALUE ,XOCR $P))



switch-valve

;NVOCA TION:

(AND ('GOAL [! (POSITRON SS $POS).))

(°FACT (TYPE SWITCH $5)_)

CON TEX T:

NIL

GOAL ACHIEVER?:
T

EFFEC T$:

(PO..,RITION $8 $P0$)

PROPER TIES:

NIL

(I

(QUER

(FORf_

$PO8:

(I (81END-MIESSAGE 81IV

_AT NIL

"FqllCe valve $wltcll -A in po_lition -A"
IS

SPOS)

(POSITION $8; $P05)))

f



xdcr-bad-O-reading

INVOCA "lION."

(AND ("FACT (VALUE $_DCR $V))

('FACT (TYPE P'XOCR $XDCR))

(eFACT ((- SV 0.))

("FACT (,STA TU3 $XDCR GOOD)))

C ON TEX T:

Nil.

GOAL ACHIEVER?:

r

EFF_C T,9:

Nil.

PROPER TIES:

([SAFETY-HANDLER T))

(!

(PRINT -WARNING
(FORMAT Nil.

"St AI:IJ$ of

SXDCR)D

4nsclucer -A is bad"

r

SXDCR GOOD))



monitor

INVOCATION:

(ANO ("GOAL (! (MONITOR $C)))

(',fACT (FO0 BAR)))

CON TEX T:

Nil,.

,GOAl- ACHIEVER?:

T

EFFEC 1".._:

NIL

(I

(WAIT-UNTIl,.
(TRANSFORM-AC

'CONDITION

'((CONDITION (1=11

1

D-BINDING $C;)))))

r

PROPER TIES:

NIL



switch-dilemma-Z

INVOCATION:

[AND ("FACT (PO31TION $ T CL))
("FACT (POSITION $,50P))

(mFAC T (A330CIA TED- TALABACK SS $ T) ))

CON TEX T:

NIL

GOAL ACHIEVER?:

T

EFFEC TS:

NIL

PROPER TIES:

NIL

(WAIT-UNTIL ( RM-AC '(V
(ELAPSED- TIME NOW

20)

(& (POSITION ST OP)
(POSITION $5

OP)))

'((NOW (MY-TIME))))))

(? (& (POSITION ST CL} (POSITION $S OP)))

{!
(I=_IINT-WARNING

(FORMAT NIL
• $wlgCrl -A OP, 1:

SS

ST)))

r



retract

INVOCA )'ION:

("GOAL (! (.RETRACTED $P).))

CON TEX T:
NIL

GOAL ACHIEVER?:
r

ACTION:

(DELETEoFAC T-F_OM-KA $P)

E_ECTS:

NIL

PROPER TIES:

NIL



monitor-pressure

INVOCA TfON:

(AND [BGOAL (! (MONITOR (PRE_R3URE-BELOW STK
$LIMI T))))

(_FACT (A530CIA TEO-UNIT $XOCR $ TK))

C_FACT (3TA TUS $XDCR GO00)))

CON TEX T:

NIL

GOAL ACHIEVER?:
T

EFFEC TS:
NIL

(! (WAIT-UNTIL (TRANSFORm-A( "(( _VALUE-OF SXOCR)

'NIL)))

PROPER TIER:

NIL

\m



out-of-range

INVOCATION:

(AND ("GOAL (? (OUT°OF'RANG_ $V :;UNIT);,)

(*'FACT (PRE..R..RURE-UL SUNIT SULk..)
(*FACT (PRES,..qURE-LL $UNIT $LL)))

CON TEX T:

NIL

GOAL ACHIEVER?:

T

_FFECT$:

NiL (!
(PRINT-WARNING

(FORMAT

NiL

"The pressure -A is a
SV

$UNIT))) 1

NILPROPER TIES:

(? (Y (> IV SUL) (< $V $LL)))

Jt Of f&ngQ for unit -A"



vernier-delta-p

JNVOCA TJDN:

(AND (°FACT (TYPE FUEL-TANK $TK 7))

(BFACT (PRESSURE STK _ $P1))

(eFACT (PART-OF SP-SY3 I STK_))

( °FAD T (OTHER -PROPELLAN T-$ Y8 TEM $P-_ Y5 I
#P-$ YS2_,)

(°FACT (PARr-OF SP-SYS2 $TK2)_

(°FACr (TYPE OXIDANT- TANK $ TK2))

CONO_*_',,_'_T (PRESSURE $ TK2 $P2))

NIL (*'FACT (> (- $P1 $P21, 20,)))

GOAl. ACHIEVER?:

T

EFFEC 1"$:

NIL

_"i3:_IINT- WARNING

/" {FORMAT

NIL
"Pressure _n tank -A is 20 psi &Dove ox _ank pressure.

_/ inhibit vernier operations (FR 6-41)"

STKI)))

PROPER TIES:
NIL



pressure-downstream

INVOCATION:

(ANO (eGOAL (? (PRESSURE STA' SP;t_)

(",tACT (CONNECTS SV ST,U: SU))
(eFACT (PO31TION SV 0,°)))

CON TEX T:

NIL

GOAL ACHIEVER?:
T

EFFECTS:

NIL

PROPER TIER:

NIL

<? (I:>RESSL RE SU $P))



pressure-request

INVOCA TION:

{'FAC T (REQUE3 7" $ASKER
(? (PRESSURE SUNIT $P-ANY))))

C 0 N TEX T:

NIL

GOAL ACHIEVER?:

T

EFFEC TS:

NIL

PROPER TIES:
NIL

(? (I_ESSUF

Y

(I (SEND-MESSAGE $
(ACHIE'

1

SUNIT $P))

_SKER

_FD INTERFACE

(? (PRESSURE $UNtT
SP_))))



request-pressure-change

IN VOCA T/ON:

( aFAC T (REQUES T SA._KER [<=T *aT_
[? (PRE33URE-CHANGE $UN;T \ ...... /

SDEL TA -ANY))))
I

CON rex T: I

NIL I

(? (PRESSURE-CHAr_GE ,UNIT ,DELTA))

GTOAL ACH'EVER?: !

f

EFFEC TS:

NIL

PROPER TIES:

NIL

E
(I

(SEND-MESSAGE
$ASKER

(ACHIEVED INTERFACE

(? (F=FIESSURE-¢ •IANGE SUNIT $DELTA)))))
r



pressure-change

INVOCATION:

("GOAL (? (PRE$$U,qE-CHAIVGE SUN; r $OEL TA,_})

CON T£X T:
NIL

GOAt. ACHIEVER?:
T

EFFEC TS:

NIL

PPtOP£R TIES:

NIL

(? (PRFSSURI $UNIT $PI))

_F

11 (SLE'P 5,>1

F

1? (PRE88URI $UNIT $P21)

(f (- $DELTA (-__ $P1)))



selector2

INVOCA T/ON:

(e/tACT {_OAK $1(_) _ R_CON T£X T:

( oFAOT (_ (LENGTH SX) 1.)_

(I (" SF (FACT-tN_ KED-KAS-OF SX)))QOAL ACHIEVER?'.
T

NIL

(I (INTEND (81_C ' r,..........tl_','¢ _RANDOMLY $8))) {! C'INTI_-NO(O-A L._.JyIX))) _ _K;I.¢,,,

NIL

$R))



selector

CON TEX T:

(AND ('_FACT (NOSAFETY BEFORE))

('FACT (> (LENQTH SX) _.))_

_OAL (! (= SF (FACT-INV?KIED-KAS-OF SX)))
ACHIEVER?:

(t_*_i-QTH $1_)1 (? 1> (I.7._

__ _ (! (INTEND (SELEC -RANDOMLY $81)1

(! (INTEND (SEU[C_MLY SX))) (! (INTEND (SELEC_L

PROPE,q T/E$: ( Ir_n_ "_ f




